Environmental Science and Pollution Research

, Volume 26, Issue 5, pp 4171–4179 | Cite as

Urban wastewater treatment by using Ag/ZnO and Pt/TiO2 photocatalysts

  • Julie J. Murcia MesaEmail author
  • Lizeth G Arias Bolivar
  • Hugo Alfonso Rojas Sarmiento
  • Elsa Giovanna Ávila Martínez
  • César Jaramillo Páez
  • Mayra Anabel Lara
  • José Antonio Navío Santos
  • María del Carmen Hidalgo López
Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries


In this study, the treatment of wastewater coming from a river highly polluted with domestic and industrial effluents was evaluated. For this purpose, series of photocatalysts obtained by ZnO and TiO2 modification were evaluated. The effect of metal addition and Ti precursor (in the case of the titania series) over the physicochemical and photocatalytic properties of the materials obtained was also analyzed. The evaluation of the photocatalytic activity showed that semiconductor modification and precursor used in the materials synthesis are important factors influencing the physicochemical and therefore the photocatalytic properties of the materials obtained. The water samples analyzed in the present work were taken from a highly polluted river, and it was found that the effectiveness of the photocatalytic treatment increases when the reaction time increases and for both, wastewater samples and isolated Escherichia coli strain follow the next order Pt/TiO2 << ZnO. It was also observed that biochemical and chemical demand oxygen and turbidity significantly decrease after treatment, thus indicating that photocatalysis is a non-selective technology, which can lead to recover wastewater containing different pollutants.


Wastewater Treatment Photocatalysis Ag/ZnO Pt/TiO2 



Research services of CITIUS University of Seville are acknowledged. C. Jaramillo-Páez thanks the University of Tolima for economic support in the studies commission.

Funding information

This work was financed by Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación “Francisco José de Caldas—Colciencias,” Project 279-2016, Universidad Pedagógica y Tecnológica de Colombia and by research fund from Project Ref. CTQ2015-64664-C2-2-P (MINECO/FEDER, UE).


  1. Ahmad R, Ahmad Z, Khan AU, Mastoi NR, Aslam M, Kim J (2016) Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications. J Environ Chem Eng 4:4143–4164CrossRefGoogle Scholar
  2. Akyol A, Yatmaz HC, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B Environ 54:19–24CrossRefGoogle Scholar
  3. American Public Health Association (APHA) (2012) Standard methods for examination of water and wastewater, 22th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, D.C.Google Scholar
  4. Chatterjee P, Ghangrekar MM, Rao S (2017) Disinfection of secondary treated sewage using chitosan beads coated with ZnO-Ag nanoparticles to facilitate reuse of treated water. J Chem Technol Biotechnol 92:2334–2341CrossRefGoogle Scholar
  5. Doerffler W, Hauffe K (1964) Heterogeneous photocatalysis I. The influence of oxidizing and reducing gases on the electrical conductivity of dark and illuminated zinc oxide surfaces. J Catal 3:156–170CrossRefGoogle Scholar
  6. Domenech J, Prieto A (1986) Stability of zinc oxide particles in aqueous suspensions under UV illumination. J Phys Chem 90:1123–1126CrossRefGoogle Scholar
  7. Gamage McEvoy J, Zhang Z (2014) Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J Photochem Photobiol C Photochem Rev 19:62–75CrossRefGoogle Scholar
  8. Guillard C, Disdier J, Herrmann J-M, Lehaut C, Chopin T, Malato S, Blanco J (1999) Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol. Catal Today 54:217–228CrossRefGoogle Scholar
  9. Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129CrossRefGoogle Scholar
  10. Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466–467:1047–1059CrossRefGoogle Scholar
  11. Iliev V, Tomova D, Eliyas A et al (2015) Enhancement of the activity of TiO2-based photocatalysts: a review. Bulg Chem Commun 47:5–11Google Scholar
  12. Jaramillo-Páez C, Navío JA, Hidalgo MC, Macías M (2017) High UV-photocatalytic activity of ZnO and Ag/ZnO synthesized by a facile method. Catal Today 284:121–128CrossRefGoogle Scholar
  13. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Application of doped photocatalysts for organic pollutant degradation—a review. J Environ Manag 198:78–94CrossRefGoogle Scholar
  14. Kim S, Hwang S-J, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267CrossRefGoogle Scholar
  15. Lara MA, Sayagués MJ, Navío JA, Hidalgo MC (2018) A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high {001} facet exposure. J Mater Sci 53:435–446CrossRefGoogle Scholar
  16. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602CrossRefGoogle Scholar
  17. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  18. Matthews RW (1991) Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand. Water Res 25:1169–1176CrossRefGoogle Scholar
  19. Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater 14:2812–2816CrossRefGoogle Scholar
  20. Murcia JJ, Hidalgo MC, Navío JA, Vaiano V, Ciambelli P, Sannino D (2012) Photocatalytic ethanol oxidative dehydrogenation over Pt/TiO2: effect of the addition of blue phosphors. Int J Photoenergy 2012:1–9CrossRefGoogle Scholar
  21. Murcia JJ, Ávila-Martínez EG, Rojas H, Navío JA, Hidalgo MC (2017) Study of the E. coli elimination from urban wastewater overphotocatalysts based on metallized. Appl Catal B Environ 200:469–476CrossRefGoogle Scholar
  22. Ong W-J, Tan L-L, Chai S-P et al (2014) Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nano 6:1946–2008Google Scholar
  23. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–551CrossRefGoogle Scholar
  24. Pardeshi SK, Patil AB (2009) Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J Mol Catal A Chem 308:32–40CrossRefGoogle Scholar
  25. Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomica D (2014) Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Appl Catal B Environ 144:369–378CrossRefGoogle Scholar
  26. Sarma B, Sarma BK (2017) Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system. Appl Surf Sci 410:557–565CrossRefGoogle Scholar
  27. Sclafani A, Herrmann J-M (1998) Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J Photochem Photobiol A Chem 113:181–188CrossRefGoogle Scholar
  28. Sun B, Vorontsov AV, Smirniotis PG (2003) Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 19:3151–3156CrossRefGoogle Scholar
  29. Sushma C, Girish Kumar S (2017) Advancements in the zinc oxide nanomaterials for efficient photocatalysis. Chem Pap In press: 1–20Google Scholar
  30. Szczepanik B (2017) Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: a review. Appl Clay Sci 141:227–239CrossRefGoogle Scholar
  31. Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192CrossRefGoogle Scholar
  32. Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102:5845–5851CrossRefGoogle Scholar
  33. Xiao G, Zhang X, Zhang W et al (2015) Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan-TiO2 organic-inorganic composites for water disinfection. Appl Catal B Environ 170–171:255–262CrossRefGoogle Scholar
  34. Yu J, Qi L, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125CrossRefGoogle Scholar
  35. Zeng C, Yuan L, Li X, Gao C, Wang H (2017) Fabrication of urchin-like Ag/ZnO hierarchical nano/microstructures based on galvanic replacement mechanism and their enhanced photocatalytic properties. Surf Interface Anal 49:599–606CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Julie J. Murcia Mesa
    • 1
    Email author
  • Lizeth G Arias Bolivar
    • 1
  • Hugo Alfonso Rojas Sarmiento
    • 1
  • Elsa Giovanna Ávila Martínez
    • 1
  • César Jaramillo Páez
    • 2
    • 3
  • Mayra Anabel Lara
    • 2
  • José Antonio Navío Santos
    • 2
  • María del Carmen Hidalgo López
    • 2
  1. 1.Grupo de Catálisis, Escuela de Ciencias QuímicasUniversidad Pedagógica y Tecnológica de Colombia UPTCTunjaColombia
  2. 2.Instituto de Ciencia de Materiales de Sevilla (ICMS), Consejo Superior de Investigaciones Científicas CSICUniversidad de SevillaSevilleSpain
  3. 3.Departamento de QuímicaUniversidad de TolimaIbagueColombia

Personalised recommendations