Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10596–10610 | Cite as

Past, current, and future research on microalga-derived biodiesel: a critical review and bibliometric analysis

  • Xiaoyu Ma
  • Ming Gao
  • Zhen Gao
  • Juan Wang
  • Min Zhang
  • Yingqun Ma
  • Qunhui Wang
Review Article

Abstract

Microalga-derived biodiesel plays a crucial role in the sustainable development of biodiesel in recent years. Literature related to microalga-derived biodiesel had an increasing trend with the expanding research outputs. Based on the Science Citation Index Expanded (SCI-Expanded) of the Web of Science, a bibliometric analysis was conducted to characterize the body of knowledge on microalga-derived biodiesel between 1993 and 2016. From the 30 most frequently used author keywords, the following research hotspots are extracted: lipid preparation from different microalga species, microalga-derived lipid and environmental applications, lipid-producing microalgae cultivation, microalgae growth reactor, and microalga harvest and lipid extraction. Other keywords, i.e., microalga mixotrophic cultivation, symbiotic system between microalga and other oleaginous yeast, microalga genetic engineering, and other applications of lipid-producing microalga are future focal points of research.

Graphical abstract

Keywords

Bibliometric method Lipid-producing microalga Microalga-derived biodiesel Research hotspots 

Notes

Acknowledgements

The authors wish to thank Professor Yuh-Shan Ho for technical support.

References

  1. Abou-Shanab RAI, El-Dalatony MM, EL-Sheekh MM, Ji M, Salama E, Kabra A, NJeon B (2014) Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol Bioproc E 19(3):510–518.  https://doi.org/10.1007/s12257-013-0485-z CrossRefGoogle Scholar
  2. Ahmad AL, Mat YN, Derek CJ, Lim JK (2014) Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock. Environ Technol 35(17):2244–2253.  https://doi.org/10.1080/09593330.2014.900117 CrossRefGoogle Scholar
  3. Álvarez-Díaz PD, Ruiz J, Arbib Z, Barragán J, Garrido-Pérez MC, Perales JA (2015) Wastewater treatment and biodiesel production by Scenedesmus obliquus in a two-stage cultivation process. Bioresour Technol 181:90–96.  https://doi.org/10.1016/j.biortech.2015.01.018 CrossRefGoogle Scholar
  4. Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energ 88(10):3402–3410.  https://doi.org/10.1016/j.apenergy.2010.12.014 CrossRefGoogle Scholar
  5. Ansari FA, Gupta SK, Shriwastav A, Guldhe A, Rawat I, Bux F (2017) Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass. Environ Sci Pollut Res Int 24(18):15299–15307.  https://doi.org/10.1007/s11356-017-9040-3 CrossRefGoogle Scholar
  6. Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297.  https://doi.org/10.1016/j.biombioe.2013.11.014 CrossRefGoogle Scholar
  7. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16(4):2070–2093.  https://doi.org/10.1016/j.rser.2012.01.003 CrossRefGoogle Scholar
  8. Balat M (2011) Potential alternatives to edible oils for biodiesel production—a review of current work. Energ Convers Manage 52(2):1479–1492.  https://doi.org/10.1016/j.enconman.2010.10.011 CrossRefGoogle Scholar
  9. Batagelj V, Mrvar A (2004) Pajek - Analysis and visualization of large networks. In: Junger M, Mutzel P (eds). Mathematics and Visualization, pp 77–103.Google Scholar
  10. Bauer LM, Costa JAV, Da Rosa APC, Santos LO (2017) Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour Technol 244(Pt 2):1425–1432.  https://doi.org/10.1016/j.biortech.2017.06.036 CrossRefGoogle Scholar
  11. Bermudez Menendez JM, Arenillas A, Menendez Diaz JA, Boffa L, Mantegna S, Binello A, Cravotto G (2014) Optimization of microalgae oil extraction under ultrasound and microwave irradiation. J Chem Technol Biot 89(11):1779–1784.  https://doi.org/10.1002/jctb.4272 CrossRefGoogle Scholar
  12. Bhola V, Swalaha F, Ranjith Kumar R, Singh M, Bux F (2014) Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Te 11(7):2103–2118.  https://doi.org/10.1007/s13762-013-0487-6 CrossRefGoogle Scholar
  13. Bilad MR, Discart V, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ (2013) Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption. Bioresour Technol 138:329–338.  https://doi.org/10.1016/j.biortech.2013.03.175 CrossRefGoogle Scholar
  14. Binnal P, Babu PN (2017) Statistical optimization of parameters affecting lipid productivity of microalga Chlorella protothecoides cultivated in photobioreactor under nitrogen starvation. South African Journal of Chemical Engineering 23:26–37.  https://doi.org/10.1016/j.sajce.2017.01.001 CrossRefGoogle Scholar
  15. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577.  https://doi.org/10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  16. Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol 28(4):362–368.  https://doi.org/10.1016/j.nbt.2011.01.004 CrossRefGoogle Scholar
  17. Chen Y, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33(10):1973–1983.  https://doi.org/10.1007/s10529-011-0672-y CrossRefGoogle Scholar
  18. Cheng C, Du T, Pi H, Jang S, Lin Y, Lee H (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 102(21):10151–10153.  https://doi.org/10.1016/j.biortech.2011.08.064 CrossRefGoogle Scholar
  19. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306.  https://doi.org/10.1016/j.biotechadv.2007.02.001 CrossRefGoogle Scholar
  20. Chiu S, Kao C, Tsai M, Ong S, Chen C, Lin C (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838.  https://doi.org/10.1016/j.biortech.2008.06.061 CrossRefGoogle Scholar
  21. Dai Y, Chen K, Chen C (2014) Study of the microwave lipid extraction from microalgae for biodiesel production. Chem Eng J 250:267–273.  https://doi.org/10.1016/j.cej.2014.04.031 CrossRefGoogle Scholar
  22. Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102(4):3883–3887.  https://doi.org/10.1016/j.biortech.2010.11.102 CrossRefGoogle Scholar
  23. De Bhowmick G, Subramanian G, Mishra S, Sen R (2014) Raceway pond cultivation of a marine microalga of Indian origin for biomass and lipid production: a case study. Algal Res 6:201–209.  https://doi.org/10.1016/j.algal.2014.07.005 CrossRefGoogle Scholar
  24. Duarte JH, Costa JAV (2017) Synechococcus nidulans from a thermoelectric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes. Bioresour Technol 241:21–24.  https://doi.org/10.1016/j.biortech.2017.05.064 CrossRefGoogle Scholar
  25. Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotech 57–8(1):223–231.  https://doi.org/10.1007/BF02941703 CrossRefGoogle Scholar
  26. Dvoretsky D, Dvoretsky S, Temnov M, Akulinin E, Peshkova E (2016). Enhanced lipid extraction from microalgae Chlorella vulgaris biomass: experiments, modelling, optimization. In: Bardone E, Bravi M, Keshavarz T (eds). Chemical Engineering Transactions, 49, 175–180.  https://doi.org/10.3303/CET1649030
  27. Fahimnia B, Sarkis J, Davarzani H (2015) Green supply chain management: A review and bibliometric analysis. Int J Prod Econ 162:101–114.  https://doi.org/10.1016/j.ijpe.2015.01.003
  28. Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102(1):101–105.  https://doi.org/10.1016/j.biortech.2010.06.016 CrossRefGoogle Scholar
  29. Fukuzawa H, Fujiwara S, Yamamoto Y, Dionisio-Sese ML, Miyachi S (1990) cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. P Natl Acad Sci Usa 87(11):4383–4387.  https://doi.org/10.1073/pnas.87.11.4383 CrossRefGoogle Scholar
  30. Gan X, Shen G, Xin B, Li M (2016) Simultaneous biological desalination and lipid production by Scenedesmus obliquus cultured with brackish water. Desalination 400:1–6.  https://doi.org/10.1016/j.desal.2016.09.012 CrossRefGoogle Scholar
  31. Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energ 87(3):756–761.  https://doi.org/10.1016/j.apenergy.2009.09.006 CrossRefGoogle Scholar
  32. Giannetto MJ, Retotar A, Rismani-Yazdi H, Peccia J (2015) Using carbon dioxide to maintain an elevated oleaginous microalga concentration in mixed-culture photo-bioreactors. Bioresour Technol 185:178–184.  https://doi.org/10.1016/j.biortech.2015.02.048 CrossRefGoogle Scholar
  33. Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnol Biofuels 7(1):84.  https://doi.org/10.1186/1754-6834-7-84 CrossRefGoogle Scholar
  34. Ho Y (2013) The top-cited research works in the science citation index expanded. Scientometrics 94(3):1297–1312.  https://doi.org/10.1007/s11192-012-0837-z CrossRefGoogle Scholar
  35. Hou Q, Mao G, Zhao L, Du H, Zuo J (2015) Mapping the scientific research on life cycle assessment: a bibliometric analysis. Int J Life Cycle Ass 20(4):541–555.  https://doi.org/10.1007/s11367-015-0846-2 CrossRefGoogle Scholar
  36. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energ 87(1):38–46.  https://doi.org/10.1016/j.apenergy.2009.06.016 CrossRefGoogle Scholar
  37. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Tech 27(8):631–635.  https://doi.org/10.1016/S0141-0229(00)00266-0 CrossRefGoogle Scholar
  38. Ivanovic D, Fu H, Ho Y (2015) Publications from Serbia in the science citation index expanded: a bibliometric analysis. Scientometrics 105(1):145–160.  https://doi.org/10.1007/s11192-015-1664-9 CrossRefGoogle Scholar
  39. Ji M, Yun H, Park S, Lee H, Park Y, Bae S, Ham J, Choi J (2015b) Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Bioresour Technol 179:624–628.  https://doi.org/10.1016/j.biortech.2014.12.053 CrossRefGoogle Scholar
  40. Ji M, Yun H, Park Y, Kabra AN, Oh I, Choi J (2015a) Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manag 159:115–120.  https://doi.org/10.1016/j.jenvman.2015.05.037 CrossRefGoogle Scholar
  41. Kandimalla P, Desi S, Vurimindi H (2016) Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environ Sci Pollut R 23(10):9345–9354.  https://doi.org/10.1007/s11356-015-5264-2 CrossRefGoogle Scholar
  42. Kao C, Chen T, Chang Y, Chiu T, Lin H, Chen C, Chang J, Lin C (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493.  https://doi.org/10.1016/j.biortech.2014.05.094 CrossRefGoogle Scholar
  43. Kao P, Ng I (2017) CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour Technol 245(Pt B):1527–1537.  https://doi.org/10.1016/j.biortech.2017.04.111 CrossRefGoogle Scholar
  44. Konur O (2011) The scientometric evaluation of the research on the algae and bio-energy. Appiled Energy 88(10):3532–3540.  https://doi.org/10.1016/j.apenergy.2010.12.059 CrossRefGoogle Scholar
  45. Krzeminska I, Piasecka A, Nosalewicz A, Simionato D, Wawrzykowski J (2015) Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities. Bioresour Technol 196:72–77.  https://doi.org/10.1016/j.biortech.2015.07.043 CrossRefGoogle Scholar
  46. Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA, Das D (2016) Recent developments on biofuels production from microalgae and macroalgae. Renew Sust Energ Rev 65:235–249.  https://doi.org/10.1016/j.rser.2016.06.055 CrossRefGoogle Scholar
  47. Lam MK, Yusoff MI, Uemura Y, Lim JW, Khoo CG, Lee KT, Ong HC (2017) Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies. Renew Energ 103:197–207.  https://doi.org/10.1016/j.renene.2016.11.032 CrossRefGoogle Scholar
  48. Lee J, Yoo C, Jun S, Ahn C, Oh H (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 1011(1):S75–S77.  https://doi.org/10.1016/j.biortech.2009.03.058 CrossRefGoogle Scholar
  49. Li X, Hu H, Zhang Y (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp under different cultivation temperature. Bioresour Technol 102(3):3098–3102.  https://doi.org/10.1016/j.biortech.2010.10.055 CrossRefGoogle Scholar
  50. Liu J, Song Y, Qiu W (2017) Oleaginous microalgae Nannochloropsis as a new model for biofuel production: review & analysis. Renew Sust Energ Rev 72:154–162.  https://doi.org/10.1016/j.rser.2016.12.120 CrossRefGoogle Scholar
  51. Liu T, Li Y, Liu F, Wang C (2016) The enhanced lipid accumulation in oleaginous microalga by the potential continuous nitrogen-limitation (CNL) strategy. Bioresour Technol 203:150–159.  https://doi.org/10.1016/j.biortech.2015.12.021 CrossRefGoogle Scholar
  52. Liu Z, Wang G, Zhou B (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722.  https://doi.org/10.1016/j.biortech.2007.09.073 CrossRefGoogle Scholar
  53. Ma C, Wen H, Xing D, Pei X, Zhu J, Ren N, Liu B (2017) Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4. Biotechnol Biofuels 10(1):111.  https://doi.org/10.1186/s13068-017-0797-x CrossRefGoogle Scholar
  54. Magdouli S, Brar SK, Blais JF (2016) Co-culture for lipid production: advances and challenges. Biomass Bioenergy 92:20–30.  https://doi.org/10.1016/j.biombioe.2016.06.003 CrossRefGoogle Scholar
  55. Mandotra SK, Kumar P, Suseela MR, Nayaka S, Ramteke PW (2016) Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour Technol 201:222–229.  https://doi.org/10.1016/j.biortech.2015.11.042 CrossRefGoogle Scholar
  56. Mao G, Liu X, Du H, Zuo J, Wang L (2015a) Way forward for alternative energy research: a bibliometric analysis during 1994–2013. Renew Sust Energ Rev 48:276–286.  https://doi.org/10.1016/j.rser.2015.03.094 CrossRefGoogle Scholar
  57. Mao G, Zou H, Chen G, Du H, Zuo J (2015b) Past, current and future of biomass energy research: a bibliometric analysis. Renew Sust Energ Rev 52:1823–1833.  https://doi.org/10.1016/j.rser.2015.07.141 CrossRefGoogle Scholar
  58. Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Bio 12(2):165–178.  https://doi.org/10.1007/s11157-012-9301-z CrossRefGoogle Scholar
  59. Mitra M, Shah F, Bharadwaj SVV, Patidar SK, Mishra S (2016) Cultivation of Nannochloropsis oceanica biomass rich in eicosapentaenoic acid utilizing wastewater as nutrient resource. Bioresour Technol 218:1178–1186.  https://doi.org/10.1016/j.biortech.2016.07.083 CrossRefGoogle Scholar
  60. Morowvat MH, Ghasemi Y (2016) Evaluation of antioxidant properties of some naturally isolated microalgae: identification and characterization of the most efficient strain. Biocatalysis and Agricultural Biotechnology 8:263–269.  https://doi.org/10.1016/j.bcab.2016.09.010 CrossRefGoogle Scholar
  61. Ng I, Tan S, Kao P, Chang Y, Chang J (2017) Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J 12(10).  https://doi.org/10.1002/biot.201600644
  62. Nicolaisen J (2010) Bibliometrics and citation analysis: from the science citation index to Cybermetrics. J Am Soc Inf Sci Tec 61(1):205–207.  https://doi.org/10.1002/asi.21181 CrossRefGoogle Scholar
  63. Ono E, Cuello JL (2006) Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector. Biosyst Eng 95(4):597–606.  https://doi.org/10.1016/j.biosystemseng.2006.08.005 CrossRefGoogle Scholar
  64. Oosthuizen JC, Fenton JE (2014) Alternatives to the impact factor. Surgeon 12(5):239–243.  https://doi.org/10.1016/j.surge.2013.08.002 CrossRefGoogle Scholar
  65. Pal-Nath D, Didi-Cohen S, Shtaida N, Nath PR, Samani T, Boussiba SKhozin-Goldberg I (2017) Improved productivity and oxidative stress tolerance under nitrogen starvation is associated with the ablated Δ5 desaturation in the green microalga Lobosphaera incisa. Algal Res 26:25–38.  https://doi.org/10.1016/j.algal.2017.06.026
  66. Perez-Lopez P, Gonzalez-Garcia S, Jeffryes C, Agathos SN, McHugh E, Walsh D, Murray P, Moane S, Feijoo G, Teresa Moreira M (2014) Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J Clean Prod 64:332–344.  https://doi.org/10.1016/j.jclepro.2013.07.011 CrossRefGoogle Scholar
  67. Petkov G, Ivanova A, Iliev I, Vaseva I (2012) A critical look at the microalgae biodiesel. Eur J Lipid Sci Tech 114(2):103–111.  https://doi.org/10.1002/ejlt.201100234 CrossRefGoogle Scholar
  68. Pham H, Kwak HS, Hong M, Lee J, Chang WS, Sim SJ (2017) Development of an X-Shape airlift photobioreactor for increasing algal biomass and biodiesel production. Bioresour Technol 239:211–218.  https://doi.org/10.1016/j.biortech.2017.05.030 CrossRefGoogle Scholar
  69. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25.  https://doi.org/10.1016/j.biortech.2010.06.035 CrossRefGoogle Scholar
  70. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biot 65(6):635–648.  https://doi.org/10.1007/s00253-004-1647-x CrossRefGoogle Scholar
  71. Qin L, Liu L, Zeng A, Wei D (2017) From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour Technol 245(Pt B):1507–1519.  https://doi.org/10.1016/j.biortech.2017.05.163 CrossRefGoogle Scholar
  72. Ramanan R, Kim B, Cho D, Ko S, Oh H, Kim H (2013) Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. FEBS Lett 587(4):370–377.  https://doi.org/10.1016/j.febslet.2012.12.020 CrossRefGoogle Scholar
  73. Ren H, Liu B, Kong F, Zhao L, Xing D, Ren N (2014) Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation. Bioresour Technol 157:355–359.  https://doi.org/10.1016/j.biortech.2014.02.009 CrossRefGoogle Scholar
  74. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112.  https://doi.org/10.1002/bit.22033 CrossRefGoogle Scholar
  75. Roessler PG (1990) Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol 92(1):73–78.  https://doi.org/10.1104/pp.92.1.73 CrossRefGoogle Scholar
  76. Sacristán De Alva M, Luna-Pabello VM, Cadena E, Ortíz E (2013) Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour Technol 146:744–748.  https://doi.org/10.1016/j.biortech.2013.07.061 CrossRefGoogle Scholar
  77. Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manag 36(6-9):693–696.  https://doi.org/10.1016/0196-8904(95)00100-R
  78. Santos CA, Caldeira ML, Lopes Da Silva T, Novais JM, Reis A (2013) Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture. Bioresour Technol 138:48–54.  https://doi.org/10.1016/j.biortech.2013.03.135
  79. Singhasuwan S, Choorit W, Sirisansaneeyakul S, Kokkaew N, Chisti Y (2015) Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. J Biotechnol 216:169–177.  https://doi.org/10.1016/j.jbiotec.2015.10.003 CrossRefGoogle Scholar
  80. Soydemir G, Keris-Sen UD, Sen U, Gurol MD (2016) Biodiesel production potential of mixed microalgal culture grown in domestic wastewater. Bioprocess Biosyst Eng 39(1):45–51.  https://doi.org/10.1007/s00449-015-1487-3 CrossRefGoogle Scholar
  81. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96.  https://doi.org/10.1263/jbb.101.87 CrossRefGoogle Scholar
  82. Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941.  https://doi.org/10.1016/j.rser.2015.11.026 CrossRefGoogle Scholar
  83. Tang S, Qin C, Wang H, Li S, Tian S (2011) Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J Supercrit Fluid 57(1):44–49.  https://doi.org/10.1016/j.supflu.2011.01.010 CrossRefGoogle Scholar
  84. Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Aggelis G, Genitsaris S, Moustaka-Gouni M, Vayenas DV (2017) Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya-based microbial consortium. J Clean Prod 148:185–193.  https://doi.org/10.1016/j.jclepro.2017.02.026 CrossRefGoogle Scholar
  85. Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis Salina. Energies 5(12):731–740.  https://doi.org/10.3390/en5030731 CrossRefGoogle Scholar
  86. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31(4):233–239.  https://doi.org/10.1016/j.tibtech.2012.12.005 CrossRefGoogle Scholar
  87. Wahidin S, Idris A, Shaleh SRM (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129:7–11.  https://doi.org/10.1016/j.biortech.2012.11.032 CrossRefGoogle Scholar
  88. Wang H, Gao L, Shao H, Zhou W, Liu T (2017) Lipid accumulation and metabolic analysis based on transcriptome sequencing of filamentous oleaginous microalgae Tribonema minusat different growth phases. Bioprocess Biosyst Eng 40(9):1327–1335.  https://doi.org/10.1007/s00449-017-1791-1 CrossRefGoogle Scholar
  89. Wang J, Zheng T, Wang Q, Xu B, Wang L (2015) A bibliometric review of research trends on bioelectrochemical systems. Curr Sci 109(12):2204–2211.  https://doi.org/10.18520/v109/i12/2204-2211 CrossRefGoogle Scholar
  90. Wu H, Miao X (2014) Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresour Technol 170:421–427.  https://doi.org/10.1016/j.biortech.2014.08.017 CrossRefGoogle Scholar
  91. Wu LF, Chen PC, Lee CM (2013) The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeter Biodegr 85:506–510.  https://doi.org/10.1016/j.ibiod.2013.05.016 CrossRefGoogle Scholar
  92. Wynn JP, Bin Abdul Hamid A, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145(Pt 8):1911–1917.  https://doi.org/10.1099/13500872-145-8-1911 CrossRefGoogle Scholar
  93. Xin L, Hong-ying H, Yu-ping Z (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour Technol 102(3):3098–3102.  https://doi.org/10.1016/j.biortech.2010.10.055 CrossRefGoogle Scholar
  94. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507.  https://doi.org/10.1016/j.jbiotec.2006.05.002 CrossRefGoogle Scholar
  95. Xue J, Niu Y, Huang T, Yang W, Liu J, Li H (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9.  https://doi.org/10.1016/j.ymben.2014.10.002 CrossRefGoogle Scholar
  96. Yen H, Yang S, Chen C, Jesisca, Chang J (2015) Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresour Technol 184:291–296.  https://doi.org/10.1016/j.biortech.2014.10.030 CrossRefGoogle Scholar
  97. Zhang D, Fu H, Ho Y (2017) Characteristics and trends on global environmental monitoring research: a bibliometric analysis based on science citation index expanded. Environ Sci Pollut R 24(33):26079–26091.  https://doi.org/10.1007/s11356-017-0147-3 CrossRefGoogle Scholar
  98. Zhang M, Gao Z, Zheng T, Ma Y, Wang Q, Gao M, Sun X (2016) A bibliometric analysis of biodiesel research during 1991–2015. J Mater Cycles Waste 20(1):10–18.  https://doi.org/10.1007/s10163-016-0575-z CrossRefGoogle Scholar
  99. Zheng M, Fu H, Ho Y (2017) Research trends and hotspots related to ammonia oxidation based on bibliometric analysis. Environ Sci Pollut R 24(25):20409–20421.  https://doi.org/10.1007/s11356-017-9711-0 CrossRefGoogle Scholar
  100. Zhu L, Wang Z, Takala J, Hiltunen E, Qin L, Xu Z, Qin X, Yuan Z (2013) Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Technol 137:318–325.  https://doi.org/10.1016/j.biortech.2013.03.144 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoyu Ma
    • 1
  • Ming Gao
    • 1
  • Zhen Gao
    • 1
  • Juan Wang
    • 1
  • Min Zhang
    • 1
  • Yingqun Ma
    • 3
  • Qunhui Wang
    • 1
    • 2
  1. 1.Department of Environmental EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory on Resource-Oriented Treatment of Industrial PollutantsBeijingChina
  3. 3.Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteNanyang Technological UniversitySingaporeSingapore

Personalised recommendations