Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 3, pp 2145–2166 | Cite as

Water planning in a mixed land use Mediterranean area: point-source abstraction and pollution scenarios by a numerical model of varying stream-aquifer regime

  • Mingxuan Du
  • Olivier FouchéEmail author
  • Elodie Zavattero
  • Qiang Ma
  • Olivier Delestre
  • Philippe Gourbesville
Groundwater under threat from diffuse contaminants: improving on-site sanitation, agriculture and water supply practices

Abstract

Integrated hydrodynamic modelling is an efficient approach for making semi-quantitative scenarios reliable enough for groundwater management, provided that the numerical simulations are from a validated model. The model set-up, however, involves many inputs due to the complexity of both the hydrological system and the land use. The case study of a Mediterranean alluvial unconfined aquifer in the lower Var valley (Southern France) is useful to test a method to estimate lacking data on water abstraction by small farms in urban context. With this estimation of the undocumented pumping volumes, and after calibration of the exchange parameters of the stream-aquifer system with the help of a river model, the groundwater flow model shows a high goodness of fit with the measured potentiometric levels. The consistency between simulated results and real behaviour of the system, with regard to the observed effects of lowering weirs and previously published hydrochemistry data, confirms reliability of the groundwater flow model. On the other hand, accuracy of the transport model output may be influenced by many parameters, many of which are not derived from field measurements. In this case study, for which river-aquifer feeding is the main control, the partition coefficient between direct recharge and runoff does not show a significant effect on the transport model output, and therefore, uncertainty of the hydrological terms such as evapotranspiration and runoff is not a first-rank issue to the pollution propagation. The simulation of pollution scenarios with the model returns expected pessimistic outputs, with regard to hazard management. The model is now ready to be used in a decision support system by the local water supply managers.

Keywords

Numerical simulation Finite element Unconfined aquifer Runoff coefficient Agriculture impact 

Notes

Acknowledgements

This research is currently being developed within the AquaVar project with the support of Nice-Côte d’Azur City, Alpes maritimes Department, Rhône-Mediterranée-Corse Water Agency, Nice-Sophia Antipolis University, Méteo-France. The work benefited from data provided by these partners and H2EA consultants (http://www.h2ea.fr/). DHI is acknowledged for the sponsored MIKE Powered by DHI licence files. Thanks to Pr. Philippe Audra for fruitful discussion during this study. The valuable suggestions and comments given by three reviewers were highly appreciated.

References

  1. Affolter A, Huggenberger P, Scheidler S, Epting J (2010) Adaptive groundwater management in urban areas effect of surface water-groundwater interaction using the example of artificial groundwater recharge and in- and exfiltration of the river Birs (Switzerland). Grundwasser 15(3):147–161.  https://doi.org/10.1007/s00767-010-0145-6 Google Scholar
  2. Alley WM (2006) Tracking US groundwater: reserves for the future? Environment Science and Policy for Sustainable Development 48(3):10–25.  https://doi.org/10.3200/ENVT.48.3.10-25 Google Scholar
  3. Andersen MS, Acworth RI (2009) Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol J 17(8):2005–2021.  https://doi.org/10.1007/s10040-009-0500-9 Google Scholar
  4. Bahremand A, De Smedt F (2008) Distributed hydrological modelling and sensitivity analysis in Torysa watershed, Slovakia. Water Resour Manag 22(3):293–408Google Scholar
  5. Barats A, Féraud G, Potot C, Philippini V, Travi Y, Durrieuc G, Dubar M, Simler R (2014) Naturally dissolved arsenic concentrations in the Alpine/Mediterranean Var River watershed (France). Sci Total Environ 473–474:422–436Google Scholar
  6. Barrett MH, Hiscock KM, Pedley S, Lerner DN, Tellam JH, French MJ (1999) Marker species for identifying urban groundwater recharge sources: a review and case study in Nottingham, UK. Wat Res 33(14):3083–3097.  https://doi.org/10.1016/S0043-1354(99)00021-4 Google Scholar
  7. Bel F (1995) Effets de la crue de novembre 1994 sur la nappe du Var. Rapport BRGM, R.38645, 21 pGoogle Scholar
  8. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. John Wiley and Sons, Inc., New York 780 pGoogle Scholar
  9. Brack W, Klamer HJC, de Ada ML, Barcelo D (2007) Effect-directed analysis of key toxicants in European river basins—a review. Environ Sci Pollut Res 14(1):30–38Google Scholar
  10. Brunner P, Simmons CT, Cook PG, Therrien R (2010) Modeling surface water-groundwater interaction with MODFLOW: some considerations. Ground Water 50(2):174–180Google Scholar
  11. Butler MJ, Verhagen BT (1997) Environmental isotopic tracing of water in the urban environment of Pretoria, South Africa. In: Chilton et al. (ed) Groundwater in the urban area: problems processes and management. 27th Cong. Int. Assoc. Hydrogeologists (IAH), 21–27 September 1997, Nottingham, pp 101–106Google Scholar
  12. Carrega P (1988) L’évapotranspiration potentielle et réelle dans le Midi méditerranéen. Son originalité par rapport au reste de la France. Recherches climatiques en régions méditerranéennes II Méditerranée 66(4):3–8Google Scholar
  13. Chaouche K, Neppel L, Dieulin C, Pujol N, Ladouche B, Martin E, Salas D, Caballero Y (2010) Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Compt Rendus Geosci 342(3):234–243.  https://doi.org/10.1016/j.crte.2010.02.001 Google Scholar
  14. Clauzon G (1978) The Messinian Var canyon (Provence, southern France)—paleogeographic implications. Mar Geol 27(3–4):231–246.  https://doi.org/10.1016/0025-3227(78)90033-6 Google Scholar
  15. Das A, Datta B (2001) Application of optimization techniques in groundwater quantity and quality management. Sadhana 26(4):293–316.  https://doi.org/10.1007/BF02703402 Google Scholar
  16. Delaroziere-Bouillin O (1971) Evaluation des ressources hydrauliques, utilisation comparée des formules de Thornthwaite, Turc mensuelle, Turc annuelle et Penman, pour le calcul de l’évapotranspiration potentielle et de l’évapotranspiration réelle moyenne - Application au territoire français (69 SGL 294 HYD). Technical report, Orléans, 22 pGoogle Scholar
  17. Delestre O, Cordier S, Darboux F, Du M, James F, Laguerre C, Lucas C, Planchon O (2014) FullSWOF: a software for overland flow simulation. In: Gourbesville Ph, Cunge J, Caignaert G (eds) Advances in Hydroinformatics, Springer, Hydrogeology, pp 221–231, DOI:  https://doi.org/10.1007/978-981-4451-42-0_19
  18. DHI (2009) MIKE 11: a modeling system for rivers and channels, Reference Manual, Danish Hydraulic Institute, Horsholm, 524 pGoogle Scholar
  19. Diersch HJ (2014) FEFLOW: finite element modelling of flow, mass and heat transport in porous and fractured media. Springer, Heidelberg, 671 p.  https://doi.org/10.1007/978-3-642-38739-5 Google Scholar
  20. Du M (2016) Integrated hydraulic modeling of groundwater flow and river-aquifer exchanges in the lower valley of Var River. PhD, University of Nice-Sophia AntipolisGoogle Scholar
  21. Du M, Zavattero E, Ma Q, Delestre O, Gourbesville P, Fouché O (2016) 3D hydraulic modelling of a complex alluvial aquifer for groundwater resource management, Procedia engineering, special issue of the 12th international conference on hydroinformatics, 154: 340-347Google Scholar
  22. Du M, Zavattero E, Ma Q, Delestre O, Gourbesville P, Fouché O (2018) 3D modeling of a complex alluvial aquifer for efficient management—application to the lower valley of Var River, France. La Houille Blanche 1:60–69Google Scholar
  23. Ducci D, Sellerino M (2015) Groundwater mass balance in urbanized areas estimated by a groundwater flow model based on a 3D hydrostratigraphical model: the case study of the eastern plain of Naples (Italy). Water Resour Manag 29(12):4319–4333.  https://doi.org/10.1007/s11269-015-1062-3 Google Scholar
  24. Emily A, Tennevin G, Mangan C (2010) Etude hydrogéologique des nappes profondes de la basse-vallée du Var (Alpes-Maritimes), Tech. Rep., H2EA Consulting and Mangan ConsultingGoogle Scholar
  25. Féraud G, Potot C, Fabretti JF, Guglielmi Y, Fiquet M, Barci V, Maria PC (2009) Trace elements as geochemical markers for surface waters and groundwaters of the Var River catchment (Alpes Maritimes, France). Comptes Rendus Chimie 12(8):922–932.  https://doi.org/10.1016/j.crci.2009.02.002 Google Scholar
  26. Foster S, Chilton J, Nijsten GJ, Richts A (2013) Groundwater—a global focus on the ‘local resource’. Curr Opin Environ Sustain 5(6):685–695.  https://doi.org/10.1016/j.cosust.2013.10.010 Google Scholar
  27. Furman A (2008) Modeling coupled surface–subsurface flow processes: a review. Vadose Zone J 7(2):741–756.  https://doi.org/10.2136/vzj2007.0065 Google Scholar
  28. Gäbler HE, Bahr A (1999) Boron isotope ratio measurements with a double-focusing magnetic sector ICP mass spectrometer for tracing anthropogenic input into surface and ground water. Chem Geol 156(1):323–330.  https://doi.org/10.1016/S0009-2541(98)00181-8 Google Scholar
  29. Garrigues S, Olioso A, Calvet JC, Martin E, Lafont S, Moulin S, Chanzy A, Marloie O, Buis S, Desfonds V, Bertrand N, Renard D (2015) Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties. Hydrol Earth Syst Sci 19(7):3109–3131.  https://doi.org/10.5194/hess-19-3109-2015 Google Scholar
  30. Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974.  https://doi.org/10.1029/92WR00607 Google Scholar
  31. Gourbesville P (2008) Integrated river basin management, ICT and DSS: challenges and needs. Phys Chem Earth 33(5):312–321.  https://doi.org/10.1016/j.pce.2008.02.007 Google Scholar
  32. Gourbesville P, Du M, Zavattero E, Ma Q (2016) Decision support system (DSS) architecture for water uses management, Procedia engineering, special issue of the 12th international conference on hydroinformatics, 154: 928–935Google Scholar
  33. Guglielmi Y (1993) Hydrogéologie des aquifères Plio-Quaternaires de la basse vallée du Var, PhD thesis, Université d’Avignon et des Pays du Vaucluse, France, 178 pGoogle Scholar
  34. Havnø K, Madsen M, Dørge J, Singh V (1995) MIKE 11: a generalized river modeling package. Computer models of watershed hydrology, 733–782Google Scholar
  35. Hussein M, Schwartz FW (2003) Modeling of flow and contaminant transport in coupled stream–aquifer systems. J Contam Hydrol 65(1-2):41–64.  https://doi.org/10.1016/S0169-7722(02)00229-2 Google Scholar
  36. Jeppesen J, Christensen S, Ladekarl UL (2011) Modelling the historical water cycle of the Copenhagen area 1850–2003. J Hydrol 404(3-4):117–129.  https://doi.org/10.1016/j.jhydrol.2010.12.022 Google Scholar
  37. Johnson LE (1986) Water resource management decision support systems. J Water Resour Plan Manag 112(3):308–325.  https://doi.org/10.1061/(ASCE)0733-9496(1986)112:3(308) Google Scholar
  38. Kundzewicz ZW, Döll P (2009) Will groundwater ease freshwater stress under climate change? Hydrol Sci J 54(4): Special Issue, Groundwater and Climate in Africa, pp 665–675Google Scholar
  39. Larkin RG, Sharp JM (1992) On the relationship between river-basin geomorphology, aquifer hydraulics, and ground-water flow direction in alluvial aquifers. GSA Bull 104(12):1608–1620.  https://doi.org/10.1130/0016-7606(1992)104<1608:OTRBRB>2.3.CO;2 Google Scholar
  40. Lerner DN (1986) Leaking pipes recharge groundwater. Ground Water 24(5):654–662.  https://doi.org/10.1111/j.1745-6584.1986.tb03714.x Google Scholar
  41. Lerner DN (1990) Groundwater recharge in urban areas. Atmos Environ 24B(1):29–33Google Scholar
  42. Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10(1):143–152.  https://doi.org/10.1007/s10040-001-0177-1 Google Scholar
  43. Li YH, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochimica & Cosmochimica Acta 38(5):703–714Google Scholar
  44. Luck JM, Ben Othman D (2002) Trace element and Pb isotope variability during rainy events in the NW Mediterranean: constraints on anthropogenic and natural sources. Chem Geol 182(2–4):443–460.  https://doi.org/10.1016/S0009-2541(01)00324-2 Google Scholar
  45. Mande AS, Liu M, Gbandi DB, Fei L, Lyutsiya K, Moctar BL, Honghan C (2012) Groundwater flow and contaminant transport modeling applications in urban area: scopes and limitations. Environ Sci Pollut Res 19:1981–1993Google Scholar
  46. McNamara JP, Kane DL, Hinzman LD (1997) Hydrograph separations in an Arctic watershed using mixing model and graphical techniques. Water Resour Res 33(7):1707–1719.  https://doi.org/10.1029/97WR01033 Google Scholar
  47. Murray-Smith DJ (2000) The inverse simulation approach: a focused review of methods and applications. Math Comput Simul 53(4):239–247.  https://doi.org/10.1016/S0378-4754(00)00210-X Google Scholar
  48. Musolff A, Leschik S, Reinstorf F, Strauch G, Schirmer M (2010) Micropollutant loads in the urban water cycle. Environ Sci Technol 44(13):4877–4883.  https://doi.org/10.1021/es903823a Google Scholar
  49. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10(3):282–290.  https://doi.org/10.1016/0022-1694(70)90255-6 Google Scholar
  50. Nasri B, Dadmehr R, Fouché O (2014) Water table rising consecutive to surface irrigation in alluvial aquifers: predictive use of numerical modelling. In: Lollino G et al. (eds) Engineering geology for society and territory – 3(79), Proceedings of the 12th Congress of IAEG, 15-19 September 2014, Torino, Italia. SpringerGoogle Scholar
  51. Ouyang Y, Zhang JE, Parajuli P (2013) Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study. Environ Sci Pollut Res 20(12):8860–8870.  https://doi.org/10.1007/s11356-013-1864-x Google Scholar
  52. Potot C, Féraud G, Schärer U, Barats A, Durrieu G, Le Poupon C, Travi Y, Simler R (2012) Groundwater and river baseline quality using major, trace elements, organic carbon and Sr–Pb–O isotopes in a Mediterranean catchment: the case of the lower Var Valley (south-eastern France). J Hydrol 472:126–147Google Scholar
  53. Rabiet M, Brissaud F, Seidel JL, Pistre S, Elbaz-Poulichet F (2005) Deciphering the presence of wastewater in a medium-sized Mediterranean catchment using a multitracer approach. Appl Geochem 20(8):1587–1596.  https://doi.org/10.1016/j.apgeochem.2005.04.005 Google Scholar
  54. Rinaldi S, Louati S, Bendjoudi H, Marsily G (2014) Modeling of transient groundwater flow, pollutant transport, and biodegradation in an aquifer with large hydraulic head variations. Hydrogeol J 22:943–956Google Scholar
  55. Rivett MO, Ellis PA, Mackay R (2011) Urban groundwater baseflow influence upon inorganic riverwater quality: the river tame headwaters catchment in the City of Birmingham, UK. J Hydrol 400(1):206–222.  https://doi.org/10.1016/j.jhydrol.2011.01.036 Google Scholar
  56. Robbins GA, Gilbert EJ (2000) MBTE: a conservative tracer for estimating biodegradation and hydrodynamic dispersion at underground storage tank sites. In: Dassargues A (ed) Tracers and modelling in hydrogeology. IAHS Publ no. 262, Wallingford, pp 235–240Google Scholar
  57. Rutsch M, Rieckermann J, Cullmann J, Ellis JB, Vollertsen J, Krebs P (2008) Towards a better understanding of sewer exfiltration. Wat Res 42(10-11):2385–2394.  https://doi.org/10.1016/j.watres.2008.01.019 Google Scholar
  58. Saltelli A (2002) Sensitivity analysis for importance assessment. Risk Anal 22(3):1–12Google Scholar
  59. Savenije HHG (1996) The runoff coefficient as the key to moisture recycling. J Hydrol 176(1-4):219–225.  https://doi.org/10.1016/0022-1694(95)02776-9 Google Scholar
  60. Schirmer M, Leschik S, Musolff A (2013) Current research in urban hydrogeology—a review. Adv Water Resour 51:280–291.  https://doi.org/10.1016/j.advwatres.2012.06.015 Google Scholar
  61. Shepard D. (1968) A two-dimensional interpolation function for irregularly-spaced data. ACM '68 Proceedings of the 1968 23rd ACM national conference: 517-524Google Scholar
  62. Singh A (2014) Groundwater resources management through the applications of simulation modelling: a review. Sci Total Environ 499:414–423.  https://doi.org/10.1016/j.scitotenv.2014.05.048 Google Scholar
  63. Souriguère K (2003) Etat des lieux-diagnostic, SAGE nappe et basse vallée du Var. Syndicat mixte d’études de la basse vallée du Var, Carros, 78 pGoogle Scholar
  64. Sun X, Bernard-Jannin L, Garneau C, Volk M, Arnold JG, Srinivasan R, Sauvage S, Sanchez-Pérez JM (2016) Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model. Hydrol Process 30(2):187–202.  https://doi.org/10.1002/hyp.10575 Google Scholar
  65. Tavakoli S, Mousavi A, Poslad S (2013) Input variable selection in time-critical knowledge integration applications: a review, analysis and recommendation paper. Adv Eng Inform 27(4):519–536.  https://doi.org/10.1016/j.aei.2013.06.002 Google Scholar
  66. Thomas A, Tellam J (2006) Modelling of recharge and pollutant fluxes to urban groundwaters. Sci Total Environ 360(1-3):158–179.  https://doi.org/10.1016/j.scitotenv.2005.08.050 Google Scholar
  67. Trauth R, Xanthopoulos C (1997) Non-point pollution of groundwater in urban areas. Wat Res 31(11):2711–2718.  https://doi.org/10.1016/S0043-1354(97)00124-3 Google Scholar
  68. Vázquez-Suñé E, Sánchez-Vila X,·Carrera J (2005) Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol J 13: 522–533, 3, DOI:  https://doi.org/10.1007/s10040-004-0360-2 Google Scholar
  69. Vizintin G, Souvent P, Veselic M, Cencur Curk B (2009) Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J Hydrol 377(3-4):261–273.  https://doi.org/10.1016/j.jhydrol.2009.08.025 Google Scholar
  70. Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP (2005) The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthol Soc 24(3):706–723.  https://doi.org/10.1899/04-028.1 Google Scholar
  71. Wessolek G, Duijnisveld WHM, Trinks S (2008) Hydro-pedotransfer functions (HPTFs) for predicting annual percolation rate on a regional scale. J Hydrol 356(1-2):17–27.  https://doi.org/10.1016/j.jhydrol.2008.03.007 Google Scholar
  72. Yang Y, Lerner DN, Barret M, Tellam J (1999) Quantification of groundwater recharge in the city of Nottingham, UK. Environ Geol 38(3):183–198.  https://doi.org/10.1007/s002540050414 Google Scholar
  73. Zhao C, Wang Y, Chen X, Li B (2005) Simulation of the effects of groundwater level on vegetation change by combining FEFLOW software. Ecol Model 187(2-3):341–351.  https://doi.org/10.1016/j.ecolmodel.2004.10.019 Google Scholar
  74. Zhou S, Yuan X, Peng S, Yue J, Wang X, Liu H, Williams DD (2014) Groundwater-surface water interactions in the hyporheic zone under climate change scenarios. Environ Sci Pollut Res 21(24):13943–13955.  https://doi.org/10.1007/s11356-014-3255-3 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mingxuan Du
    • 1
  • Olivier Fouché
    • 2
    Email author
  • Elodie Zavattero
    • 1
  • Qiang Ma
    • 1
  • Olivier Delestre
    • 3
  • Philippe Gourbesville
    • 1
  1. 1.Polytech’LabUniversité Nice-Sophia AntipolisBiotFrance
  2. 2.GeF’Lab, EA4630 Geomatique & FoncierConservatoire National des Arts et MétiersParisFrance
  3. 3.J.A. Dieudonné laboratory, UMR CNRS 7351Université Nice-Sophia AntipolisNiceFrance

Personalised recommendations