Advertisement

Suspended particulate matter determines physical speciation of Fe, Mn, and trace metals in surface waters of Loire watershed

  • Mohamed BaaloushaEmail author
  • Serge Stoll
  • Mikaël Motelica-Heino
  • Nathalie Guigues
  • Gilles Braibant
  • Frédéric Huneau
  • Philippe Le CoustumerEmail author
Analytical methods for characterization of nano- and micro-objects

Abstract

This study investigates the spatiotemporal variability of major and trace elements, dissolved organic carbon (DOC), total dissolved solids (TDS), and suspended particulate matter (SPM) in surface waters of several hydrosystems of the Loire River watershed in France. In particular, this study aims to delineate the impact of the abovementioned water physicochemical parameters on natural iron and manganese physical speciation (homoaggregation/heteroaggregation) among fine colloidal and dissolved (< 10 nm), colloidal (10–450 nm) and particulate (> 450 nm) phases in Loire River watershed. Results show that the chemistry of the Loire River watershed is controlled by two end members: magmatic and metamorphic petrographic context on the upper part of the watershed; and sedimentary rocks for the middle and low part of the Loire. The percentage of particulate Fe and Mn increased downstream concurrent with the increase in SPM and major cations concentration, whereas the percentage of colloidal Fe and Mn decreased downstream. Transmission electron microscopy analyses of the colloidal and particulate fractions (from the non-filtered water sample) revealed that heteroaggregation of Fe and Mn rich natural nanoparticles and natural organic matter to the particulate phase is the dominant mechanism. The heteroaggregation controls the partitioning of Fe and Mn in the different fractions, potentially due to the increase in the ionic strength, and divalent cations concentration downstream, and SPM concentration. These findings imply that SPM concentration plays an important role in controlling the fate and behavior of Fe and Mn in various sized fractions.

Graphical abstract

Physical speciation by heteroaggregation of (Fe-Mn) compounds: high [SPM] → [Fe-Mn] particulate faction; low {SPM] → [Fe-Mn] colloid-dissolved fraction.

Keywords

Natural iron and manganese Suspended particle matter Natural nanoparticles Colloids Physical speciation Hetero-aggregation Surface waters Loire River watershed 

Notes

Acknowledgments

Thanks to BRGM who supported (financial, technically) this research, and we address special salutations at A-M. Fouillac who helped us by a financial support dedicated to sampling campaign and laboratory analysis.

References

  1. Alloway BJ (1990) The origin of heavy metals in soils. In: Heavy metals in soils. Wiley, New York, pp 29–39Google Scholar
  2. Audry S, Schafer J, Blanc G, Bossy C, Lavaux G (2004) Anthropogenic components of heavy metal (Cd, Zn, Cu, Pb) budgets in the Lot-Garonne fluvial system (France). Appl Geochem 19(5):769–786.  https://doi.org/10.1016/j.csr.2011.03.006 CrossRefGoogle Scholar
  3. Baalousha M, Motelica-Heino M, Baborowski M, Hofmeister C, Le Coustumer P (2006) Size based speciation of natural colloidal particles by flow field flow fractionation-inductively coupled plasma-mass spectroscopy-transmission electron microscopy/X-energy dispersive spectroscopy: colloids-trace element interaction. Environ Sci Technol 40(7):2156–2162.  https://doi.org/10.1021/es051498d CrossRefGoogle Scholar
  4. Benson NU, Anake WU, Olanrewaju IO (2013) Analytical relevance of trace metal speciation in environmental and biophysicochemical systems. Am J Anal Chem 4:633–641.  https://doi.org/10.4236/ajac.2013 CrossRefGoogle Scholar
  5. Berner EK, Berner RA (1996) Global environment: water, air and geochemical cycles. Prenrice-Hall, Englewood CliffsGoogle Scholar
  6. Bird D (2003) Characterization of anthropogenic and natural sources of acid rock drainage at the cinnamon gulch abandoned mine land inventory site, Summit County, Colorado. Environ Geol 33:919–932 ISSN 0943-0105CrossRefGoogle Scholar
  7. Boyle EA, Edmond JM, Sholkovitz ER (1977) The mechanism of iron removal in estuaries. Geochim Cosmochim Acta 41(8):1313–1324.  https://doi.org/10.1016/0016-7037(77)90109-0 CrossRefGoogle Scholar
  8. BRGM (1996) Geological Map of France, 1: 1,000,000 scaleGoogle Scholar
  9. Brown GE, Foster AL, Ostergren JD (1999) Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Natl Acad Sci U S A 96(7):3388–3395.  https://doi.org/10.1073/pnas.96.7.3388 CrossRefGoogle Scholar
  10. Cameron AJ, Liss PS (1984) The stabilization of dissolved iron in freshwaters. Water Res 18(2):179–185.  https://doi.org/10.1016/0043-1354(84)90067-8 CrossRefGoogle Scholar
  11. Ciszewski D, Grygar TM (2016) A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water Air Soil Pollut 227(7):227–239.  https://doi.org/10.1007/s11270-016-2934-8 CrossRefGoogle Scholar
  12. Clozier L, Turland M, Belkessa M (1976) Gelogical map of France at 1:50,000 scale, Dornes sheet. Explanatory Notes [51]Google Scholar
  13. Clozier L, Debrand-Passard S, Delance JH, Desprez N, Lorenz C, Lorenz J (1983) Geological map of France at 1:50,000 scale, Sancoins sheet. Explanatory Notes. [37]Google Scholar
  14. De Goër De Herve A, Tempier P (1988) Carte géologique à l'échelle du 1/50000, Saint-Flour sheet. Ann.Scien.de l'Univ.de Clermont-Ferrand BRGM, 92Google Scholar
  15. Delance JH, Lablanche G, Clozier L, Debrand-Passard S, Gros Y, Cornet J, Martins C, Vaurtrelle C, Garnier M (1988) Geological map of France at 1:50,000 scale, Nevers sheet. Explanatory Notes. [55]Google Scholar
  16. Dhivert E, Grosbois C, Desmet M, Curie F, Moatar F, Meybeck M, Bourrat X (2013) The metallic contamination of the Loire River Basin (France): spatial and temporal evolution with a multi-scale approach. EGU General Assembly 2013, 7-12 April, 2013 in Vienna, Austria, id EGU2013–10677Google Scholar
  17. Dojilido JR, Best GA (1996) Chemistry of water and pollution. J Hydrol 180:1–4CrossRefGoogle Scholar
  18. Dong D, Derry LA, Lion LW (2003) Pb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials. Water Res 37(7):1662–1666.  https://doi.org/10.1016/S0043-1354(02)00556-0 CrossRefGoogle Scholar
  19. Figueres G, Martin JM, Meybeck M, Seyler P (1985) A comparative study of mercury contamination in the Tagus estuary (Portugal) and major French estuaries (Gironde, Loire, Rhone). Estuar Coast Shelf Sci 20(2):183–203.  https://doi.org/10.1016/0272-7714(85)90037-X CrossRefGoogle Scholar
  20. Fuller CC, Harvey JW (2000) Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. Environ Sci Technol 34(7):1150–1155.  https://doi.org/10.1021/es990714d CrossRefGoogle Scholar
  21. Gaboury B, Tim FR (1999) The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochim Cosmochim Acta 63(1):113–127.  https://doi.org/10.1016/S0016-7037(98)00276-2 CrossRefGoogle Scholar
  22. Gagnon C, Turcotte P, Vigneault B (2009) Comparative study of the fate and mobility of metals discharged in mining and urban effluents using sequential extractions on suspended solids. Environ Geochem Health 31:657.  https://doi.org/10.1007/s10653-008-9223-4 CrossRefGoogle Scholar
  23. Gaillardet J, Viers J, Dupré B (2005) Trace elements in river waters. Treat Geochem 5:1–48.  https://doi.org/10.1016/B0-08-043751-6/05165-3 Google Scholar
  24. Galan E, Gomez-Ariza JL, Gonzalez I, Fernandez-Caliani JC, Morales E, Giraldez I (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18(1-4):409–421.  https://doi.org/10.1007/s11270-008-9905-7 CrossRefGoogle Scholar
  25. Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York.  https://doi.org/10.4319/lo.1972.17.1.0165 Google Scholar
  26. Grosbois C, Negrel P, Fouillac C, Grimaud D (2000) Dissolved load of the Loire River: chemical and isotopic characterization. Chem Geol 170(1-4):179–201.  https://doi.org/10.1016/S0009-2541(99)00247-8 CrossRefGoogle Scholar
  27. Grosbois C, Négrel P, Grimaud D, Fouillac C (2001) An overview of dissolved and suspended matter fluxes in the Loire river basin: natural and anthropogenic inputs. Aquat Geochem 7(2):81–105.  https://doi.org/10.1023/A:1017518831860 CrossRefGoogle Scholar
  28. Guéguen C, Dominik J (2003) Partitioning of trace metals between particulate, colloidal and truly dissolved fractions in a polluted river: the Upper Vistula River (Poland). Appl Geochem 18(3):457–470.  https://doi.org/10.1016/S0883-2927(02)00090-2 CrossRefGoogle Scholar
  29. Hartland A, Lead JR, Slaveykova VL, O’Carrol D, Valsami-Jones E (2013) The environmental significance of natural nanoparticles. Nat Educ Knowl 4(8):7–14Google Scholar
  30. Honeyman BD, Santschi PH (1988) Metals in aquatic systems: Predicting Their Scavenging Residence Times From Laboratory Data Remains a Challenge. Environ Sci Technol 22(8):862–871.  https://doi.org/10.1021/es00173a002 CrossRefGoogle Scholar
  31. Hong H, Kester DR (1985) Chemical forms of iron in Connecticut Rivers estuary. Estuar Coast Shelf Sci 21(4):449–459.  https://doi.org/10.1016/0272-7714(85)90049-6 CrossRefGoogle Scholar
  32. Horowitz AJ, Elrick KA (1987) The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl Geochem 2(4):437–451.  https://doi.org/10.1016/0883-2927(87)90027-8 CrossRefGoogle Scholar
  33. Jaïry A, Garban B, Blanchard M, Chesterikoff A (1999) Speciation of organic carbon, cu and Mn in the river Marne (France): the role of colloids. Hydrol Process 13(2):223–237.  https://doi.org/10.1002/(SICI)1099-1085(19990215)13:2 CrossRefGoogle Scholar
  34. Jarvie HP, Neal C, Leach DV, Ryland GP, House WA, Robson AJ (1997) Major ion concentrations and the inorganic carbon chemistry of the Humber rivers. Sci Total Environ 194-195:285–302.  https://doi.org/10.1016/S0048-9697(96)05371-5 CrossRefGoogle Scholar
  35. Johnson CA (1986) The regulation of trace element concentrations in river and estuarine waters contaminated with acid mine drainage: the adsorption of Cu and Zn on amorphous Fe oxyhydroxides. Geochim Cosmochim Acta 50(11):2433–2438.  https://doi.org/10.1016/0016-7037(86)90026-8 CrossRefGoogle Scholar
  36. Kinniburgh DG, Jackson ML, Syers JK (1976) Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci Soc Am J 40(5):796–799.  https://doi.org/10.2136/sssaj1976.03615995004000050047x CrossRefGoogle Scholar
  37. Kroonenberg SB, Moura ML, Jonker ATJ (1988) Geochemistry of the sands of the Allier River terraces, France. Geol Mijnb 67:75–89Google Scholar
  38. Ledin A, Karlsson S, Düker A, Allard B (1995) Characterization of the submicrometer phase in surface waters. Analyst 120(3):603–608.  https://doi.org/10.1039/AN9952000603 CrossRefGoogle Scholar
  39. Lion LW, Altmann RS, Leckie JO (1982) Trace-metal adsorption characteristics of estuarine particulate matter: evaluation of contributions of Fe/Mn oxide and organic surface coatings. Environ Sci Technol 16(10):660–666.  https://doi.org/10.1021/es00104a007 CrossRefGoogle Scholar
  40. Loosli F, Vitorazi L, Berret JF, Stoll S (2015) Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO2 nanoparticles interacting with natural organic matter. Water Res 80:139–148.  https://doi.org/10.1016/j.watres.2015.05.009 CrossRefGoogle Scholar
  41. Luoma SN, Bryan GW (1981) A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants. Sci Total Environ 17(2):165–196.  https://doi.org/10.1016/0048-9697(81)90182-0 CrossRefGoogle Scholar
  42. Lyven B, Hassellov M, Turner DR, Haraldsson C, Andersson K (2003) Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICMS MS. Geochim Cosmochim Acta 67(20):3791–3802.  https://doi.org/10.1016/S0016-7037(03)00087-5 CrossRefGoogle Scholar
  43. Masson M, Blanc G, Schäfer J, Parlanti E, Le Coustumer P (2011) Copper addition by organic matter degradation in the freshwater reaches of a turbid estuary. STOTEN 409(8):1539–1549.  https://doi.org/10.1016/j.scitotenv.2011.01.022 Google Scholar
  44. McNeely RN, Neimanis VP, Dwyer L (2005) Water quality source book, A guide to water quality parameters. Environment Canada, OttawaGoogle Scholar
  45. Meybeck M (1986) Composition chimique des ruisseaux non pollués en France. Sci Geol Bull 39(1):3–77Google Scholar
  46. Meybeck M, Ragu A (1996) Rivers discharge to the oceans: an assessment of suspended solids, major ions and nutrients. United Nation Environmental Programme. ReportGoogle Scholar
  47. Mill AJB (1980) Colloidal and macromolecular forms of iron in natural waters I: A Review. Environ Technol Lett 1980(1):97–108.  https://doi.org/10.1080/095593338009383955 CrossRefGoogle Scholar
  48. Milliman LD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91(20):1–21.  https://doi.org/10.1016/S0016-7037(03)00087-5 CrossRefGoogle Scholar
  49. Neal C, Robson AJ, Jeffery HA, Harrow ML, Neal M, Smith CJ, Jarvie HP (1997) Trace element inter-relationships for the Humber rivers: inferences for hydrological and chemical controls. Sci Total Environ 194-195:321–343.  https://doi.org/10.1016/S0048-9697(96)05373-9 CrossRefGoogle Scholar
  50. Négrel P, Grosbois C (1999) Changes in chemical and 87Sr/86Sr signature distribution patterns of suspended matter and bed sediments in the upper Loire River basin (France). Chem Geol 156(1–4):231–249.  https://doi.org/10.1016/S0009-2541(98)00182-X CrossRefGoogle Scholar
  51. Négrel P, Roy S (1998) Chemistry of rainwater in the Massif Central (France): a strontium isotope and major element study. Appl Geochem 13(8):941–952.  https://doi.org/10.1016/S0883-2927(98)00029-8 CrossRefGoogle Scholar
  52. Négrel P, Fouillac C, Branch M (1997) Occurrence of mineral water springs in the stream channel of the Allier River (Massif Central, France): chemical and Sr isotope constraints. J Hydrol 203(1–3):143–153.  https://doi.org/10.1016/S0022-1694(97)00094-2 CrossRefGoogle Scholar
  53. Négrel P, Grosbois C, Klopmann W (2000) The labile fraction of suspended matter in the Loire River (France): multi-element chemistry and isotopic (Rb-Sr and C-O) systematics. Chem Geol 166(3–4):271–285.  https://doi.org/10.1016/S0009-2541(99)00225-9 CrossRefGoogle Scholar
  54. Oriekhova O, Stoll S (2015) Effects of pH and fulvic acids concentration on the stability of fulvic acids–cerium (IV) oxide nanoparticle complexes. Chemosphere 144:131–137.  https://doi.org/10.1016/j.chemosphere.2015.08.057 CrossRefGoogle Scholar
  55. Otero N, Vitoria L, Soler A, Canals A (2005) Fertiliser characterisation: major, trace and rare earth elements. Appl Geochem 20(8):1473–1488.  https://doi.org/10.1016/j.apgeochem.2005.04.002 CrossRefGoogle Scholar
  56. Palmer MR, Edmond JM (1993) Uranium in river water. Geochim Cosmochim Acta 57(20):4947–4955.  https://doi.org/10.1016/0016-7037(93)90131-F CrossRefGoogle Scholar
  57. Palomino D, Stoll S (2013) Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems. J Nanopart Res 15(2):1428–1436.  https://doi.org/10.1007/s11051-013-1428-5 CrossRefGoogle Scholar
  58. Pedro M, Le Boudec A, Davranche M, Dia A, Henin O (2011) How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction ? J Colloid Interface Sci 359(1):75–85.  https://doi.org/10.1016/j.jcis.2011.03.067 CrossRefGoogle Scholar
  59. Petelet E, Luck LM, Othman D, Negrel P, Aquilina L (1998) Geochemistry and water dynamics of a medium-sized watershed: the Hérault, southern France, I Organisation of the different water reservoirs as constrained by Sr isotopes, major, and trace elements. Chem Geol 150(1):63–83.  https://doi.org/10.1016/S0009-2541(98)00053-9 CrossRefGoogle Scholar
  60. Point D (2004) Speciation and biogeochemistry of trace metals in the Adour estuary. Ph. D. Thesis, University of PauGoogle Scholar
  61. Probst JL, Bazerbachi A (1986) Solute and particulate transports by the upstream part of the Garonne River. Sci Geol Bull 39(1):79–98Google Scholar
  62. Ran Y, Fu JM, Sheng GY, Beckett R, Hart BT (2000) Fractionation and composition of colloidal and suspended particulate materials in rivers. Chemosphere 41, 1–2:33–43.  https://doi.org/10.1016/S0045-6535(99)00387-2 CrossRefGoogle Scholar
  63. Roy S (1996) Utilisation des isotopes du Pb et du Sr comme traceurs des apports anthropiques et naturels dans les précipitations et les rivières du bassin de Paris. PhD Thesis, Université de Paris 7Google Scholar
  64. Roy S, Négrel P (2001) A Pb isotope and trace element study of rainwater from the Massif Central (France). Sci Total Environ 277(1–3):225–239.  https://doi.org/10.1016/S0048-9697(00)00883-4 CrossRefGoogle Scholar
  65. Roy S, Gaillardet J, Allegre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63(9):1277–1292.  https://doi.org/10.1016/S0016-7037(99)00099-X CrossRefGoogle Scholar
  66. Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley Interscience, New YorkGoogle Scholar
  67. Tessier A, Rapin F, Carignan R (1985) Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim Cosmochim Acta 49(1):183–194.  https://doi.org/10.1016/0016-7037(85)90203-0 CrossRefGoogle Scholar
  68. Tessier A, Fortin D, Belzile N, De Vitre RR, Leppard GG (1996) Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochim Cosmochim Acta 60:387–404.  https://doi.org/10.1016/0016-7037(95)00413-0 CrossRefGoogle Scholar
  69. Thurman EM (1985) Organic geochemistry of natural waters. Martinus Nijhoff/Dr. W. Junk Publishers, Boston.  https://doi.org/10.1007/978-94-009-5095-5 CrossRefGoogle Scholar
  70. Trivedi P, Ave L (2000) Modeling cd and Zn sorption to hydrous metal oxides. Environ Sci Technol 34(11):2215–2223.  https://doi.org/10.1021/es991110c CrossRefGoogle Scholar
  71. Vialaron C (1993) L'antimoine dans le département de Haute-Loire. (Ed) Vialaron, pp 32Google Scholar
  72. Vignati D, Dominik J (2003) The role of coarse colloids as a carrier phase for trace metals in riverine systems. Aquat Sci 65(2):129–142.  https://doi.org/10.1007/s00027-003-0640-2 CrossRefGoogle Scholar
  73. Wen LS, Santschi PH, Gill GA, Paternostro CL, Lehman RD (1997) Colloidal and particulate silver in river and estuarine waters of Texas. Environ Sci Technol 31(3):723–731.  https://doi.org/10.1021/es9603057 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Environmental Nanoscience and Risk, Arnold School of Public HealthUniversity of South CarolinaColumbiaUSA
  2. 2.Faculté des Sciences, Institut ForelUniversité de Genève, Uni VogtGenèveSwitzerland
  3. 3.ISTOUMR 7327 CNRS-Université d’Orléansd’OrléansFrance
  4. 4.LNEParisFrance
  5. 5.BRGMOrléansFrance
  6. 6.Faculté des Sciences et TechniquesUniversité de Corse Pascal PaoliCorteFrance
  7. 7.CNRS UMR 6134 SPE, Laboratoire d’HydrogéologieCorteFrance
  8. 8.UMR5254 IPREM/, Technopôle HélioparcCNRS-Université de Pau et des Pays de l’AdourPau cédex09France
  9. 9.ENSEGIDUniversité Bordeaux Montaigne EA 4592 Géoressources & EnvironnementPessacFrance
  10. 10.UF Sciences de la Terre & de l’Environnement B.18Université de BordeauxPessac CedexFrance

Personalised recommendations