Environmental Science and Pollution Research

, Volume 26, Issue 30, pp 30596–30602 | Cite as

Different calcification responses of two hermatypic corals to CO2-driven ocean acidification

  • Xinqing Zheng
  • Fuwen KuoEmail author
  • Ke Pan
  • Haining Huang
  • Rongcheng Lin
Water Environment Protection and Contamination Treatment


Understanding how calcification is influenced by the enhanced dissolution of CO2 in the oceans is the key to evaluating the effects of ocean acidification (OA) on coral reefs. In this study, two branching hermatypic corals widely distributed in the South China Sea, Pocillopora damicornis and Seriatopora caliendrum, were used to study the calcification responses to CO2-driven OA (7.77 ± 0.07 vs. 8.15 ± 0.12). Our results showed that the calcification rate (0.17 ± 0.04%/day to 0.21 ± 0.12%/day) in P. damicornis remained unchanged in the acidified seawaters, but that in S. caliendrum decreased significantly (0.62 ± 0.21%/day to 0.44 ± 0.11%/day). Our results suggested that reef corals with high calcification rates may be more susceptible to the enhanced dissolution of CO2. Differential calcified response to elevated CO2 may be closely attributed to coralline capacity of the upregulation at their site of calcification in acidified seawater.


Ocean acidification Pocillopora damicornis Seriatopora caliendrum Calcification 


Funding information

This work was funded by the China-ASEAN Maritime Cooperation Fund Project (contract no: HX150702, HX161101), Regional Demonstration of Marine Economy Innovative Development Project (contract no: 16PZY002SF18), Xiamen Southern Oceanographic Center (contract no: 14CZY037HJ11), Global Change and Air-sea Interaction Research, and the Natural Science Foundation of Fujian Province (2015J05083).


  1. Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Chang Biol 17(7):2478–2487. CrossRefGoogle Scholar
  2. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105:17442–17446CrossRefGoogle Scholar
  3. Anthony KRN, Kleypas JA, Gattuso JP (2011) Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification. Glob Chang Biol 17(12):3655–3666. CrossRefGoogle Scholar
  4. Bhagooli R, Yakovleva I (2004) Differential bleaching susceptibility and mortality patterns among four corals in response to thermal stress. Symbiosis 37(1–3):121–136Google Scholar
  5. Carreiro-Silva M, Cerqueira T, Godinho A, Caetano M, Santos R, Bettencourt R (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33(2):465–476. CrossRefGoogle Scholar
  6. Castillo KD, Ries JB, Bruno JF, Westfield IT (2014) The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. Proc R Soc B Biol Sci 281(1797):20141856. CrossRefGoogle Scholar
  7. Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30(4):911–923CrossRefGoogle Scholar
  8. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22(4):118–127. CrossRefGoogle Scholar
  9. Comeau S, Carpenter R, Nojiri Y, Putnam H, Sakai K, Edmunds P (2014a) Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Proc R Soc B Biol Sci 281(1790):20141339. CrossRefGoogle Scholar
  10. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2014b) Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations. Limnol Oceanogr 59(3):1081–1091. CrossRefGoogle Scholar
  11. Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101(3):389–395. CrossRefGoogle Scholar
  12. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization, SidneyGoogle Scholar
  13. Dufault AM, Cumbo VR, Fan T-Y, Edmunds PJ (2012) Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proc R Soc Lond B Biol Sci 279(1740):2951–2958. CrossRefGoogle Scholar
  14. Dufault AM, Ninokawa A, Bramanti L, Cumbo VR, Fan T-Y, Edmunds PJ (2013) The role of light in mediating the effects of ocean acidification on coral calcification. J Exp Biol 216(9):1570–1577. CrossRefGoogle Scholar
  15. Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56(6):2402–2410. CrossRefGoogle Scholar
  16. Edmunds PJ, Cumbo VR, Fan T-Y (2013) Metabolic costs of larval settlement and metamorphosis in the coral Seriatopora caliendrum under ambient and elevated pCO2. J Exp Mar Biol Ecol 443:33–38. CrossRefGoogle Scholar
  17. Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Chang Biol 18(3):843–853. CrossRefGoogle Scholar
  18. Hillhouse EW, Grammatopoulos DK (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 27(3):260–286. CrossRefGoogle Scholar
  19. Huang H, Yuan X-C, Cai W-J, Zhang C-L, Li X, Liu S (2014) Positive and negative responses of coral calcification to elevated pCO2: case studies of two coral species and the implications of their responses. Mar Ecol Prog Ser 502:145–156. CrossRefGoogle Scholar
  20. Jokiel P, Rodgers K, Kuffner I, Andersson A, Cox E, Mackenzie F (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27(3):473–483. CrossRefGoogle Scholar
  21. Kleypas JA, Langdon C (2006) Coral reefs and changing seawater carbonate chemistry. Coast Estuar Stud: Coral Reefs Clim Chang Sci Manag 61:73–110. CrossRefGoogle Scholar
  22. Langdon C, Atkinson M (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res Oceans 110(C09S07):1978–2012Google Scholar
  23. Lewis E, Wallace D (1998) CO2SYS Program. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory Environmental Sciences Division, Oak RidgeGoogle Scholar
  24. McCulloch M, Falter J, Trotter J, Montagna P (2012a) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2(8):623–627. CrossRefGoogle Scholar
  25. McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, López Correa M, Maier C, Rüggeberg A, Taviani M (2012b) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34CrossRefGoogle Scholar
  26. Movilla J, Orejas C, Calvo E, Gori A, López-Sanz À, Grinyó J, Domínguez-Carrió C, Pelejero C (2014) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33(3):675–686. CrossRefGoogle Scholar
  27. Pachauri RK, Meyer L, Plattner G-K, Stocker T (2015) IPCC, 2014: climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCCGoogle Scholar
  28. Rädecker N, Meyer FW, Bednarz VN, Cardini U, Wild C (2014) Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix. Mar Ecol Prog Ser 511:297–302. CrossRefGoogle Scholar
  29. Ricke K, Orr J, Schneider K, Caldeira K (2013) Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections. Environ Res Lett 8(3):34003–34008CrossRefGoogle Scholar
  30. Ries JB (2011) A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim Cosmochim Acta 75(14):4053–4064. CrossRefGoogle Scholar
  31. Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7(1):289–300. CrossRefGoogle Scholar
  32. Seveso D, Montano S, Strona G, Orlandi I, Galli P, Vai M (2013) Exploring the effect of salinity changes on the levels of Hsp60 in the tropical coral Seriatopora caliendrum. Mar Environ Res 90:96–103. CrossRefGoogle Scholar
  33. Suggett DJ, Dong LF, Lawson T, Lawrenz E, Torres L, Smith DJ (2013) Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32(2):327–337. CrossRefGoogle Scholar
  34. Szmant AM (2002) Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25(4):743–766. CrossRefGoogle Scholar
  35. Takahashi A, Kurihara H (2013) Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment. Coral Reefs 32(1):305–314. CrossRefGoogle Scholar
  36. Tanaka Y, Iguchi A, Nishida K, Inoue M, Nakamura T, Suzuki A, Sakai K (2014) Nutrient availability affects the response of juvenile corals and the endosymbionts to ocean acidification. Limnol Oceanogr 59(5):1468–1476CrossRefGoogle Scholar
  37. Tanaka K, Holcomb M, Takahashi A, Kurihara H, Asami R, Shinjo R, Sowa K, Rankenburg K, Watanabe T, McCulloch M (2015) Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs 34(4):1139–1149. CrossRefGoogle Scholar
  38. Tang C-H, Lin C-Y, Lee S-H, Wang W-H (2014) Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum. Aquat Toxicol 148:1–8. CrossRefGoogle Scholar
  39. Wall CB, Fan TY, Edmunds PJ (2014) Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs 33(1):119–130. CrossRefGoogle Scholar
  40. Wicks LC, Roberts JM (2012) Benthic invertebrates in a high-CO2 world. Oceanogr Mar Biol 50:127–188CrossRefGoogle Scholar
  41. Zhao M-X, Yu K-F, Shi Q, Zhang Q-M, Yan H-Q, Huang L-Y (2013) Source, distribution and influencing factors of sediments on Luhuitou fringing reef, Northern South China Sea. Chin Sci Bull 58(17):1583–1589 (In Chinese). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xinqing Zheng
    • 1
  • Fuwen Kuo
    • 2
    Email author
  • Ke Pan
    • 3
  • Haining Huang
    • 1
  • Rongcheng Lin
    • 1
  1. 1.Third Institute of OceanographyState Oceanic AdministrationXiamenChina
  2. 2.National Museum of Marine Biology and AquariumPingtungTaiwan
  3. 3.Institute for Advanced StudyShenzhen UniversityShenzhenChina

Personalised recommendations