Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 14, pp 13906–13915 | Cite as

Mercury in the feathers of bird scavengers from two areas of Patagonia (Argentina) under the influence of different anthropogenic activities: a preliminary study

  • Alessandro Di Marzio
  • Pilar Gómez-Ramírez
  • Facundo Barbar
  • Sergio Agustín Lambertucci
  • Antonio Juan García-Fernández
  • Emma Martínez-LópezEmail author
Research Article

Abstract

Mercury (Hg) is a global pollutant that bioaccumulates and biomagnifies in food chains and is associated with adverse effects in both humans and wildlife. We used feather samples from bird scavengers to evaluate Hg concentrations in two different areas of Northern Patagonia. Hg concentrations were analyzed in feathers obtained from turkey vultures (Cathartes aura), Black Vultures (Coragyps atratus), and southern crested caracaras (Caracara plancus) from the two areas of Northern Patagonia (Argentina): Bariloche and El Valle. Hg was detected in all the samples analyzed, but the concentrations can be considered low for the three species in both sampling areas. The mean concentration of Hg in Bariloche was 0.22 ± 0.16 mg/kg dry weight (d.w.) in black vulture, 0.13 ± 0.06 mg/kg d.w. in turkey vulture, and 0.13 ± 0.09 mg/kg d.w. in southern crested caracara; in El Valle, the mean concentration of Hg was 1.02 ± 0.89 mg/kg d.w. in black vulture, 0.53 ± 0.82 mg/kg d.w. in turkey vulture, and 0.54 ± 0.74 mg/kg d.w. in southern crested caracara. Hg concentrations in feathers were explained by the sampling area but not by the species. The concentrations of Hg contamination were comparable to those obtained in other studies of terrestrial raptors and aquatic bioindicator raptors. The species of the present study occur throughout much of North and South America. Thus, they may be appropriate bioindicators across the species’ range, which is particularly useful as a surrogate, especially in distribution areas shared with endangered scavengers such as the California condor (Gymnopsys californianus) and the Andean Condor (Vultur gryphus).

Keywords

Heavy metals Non-invasive sampling Cathartidae Caracara plancus Northern Patagonia Mercury 

Notes

Acknowledgements

Dr. Martínez-López was granted with a mobility grant from BSCH (Banco Santander Central Hispano) to obtain the feathers. We thank PICT (BID, Banco Interamericano de Desarrollo) 0725/2014 for the financial support for the field trips. We also thank Fundación Séneca (CARM, Comunidad Autonoma de la Region de Murcia) with the MASCA (Monitorización con Animales Silvestres de la Contaminación Ambiental) 2014 Project (19481/PI/14), and ESF (European Science Foundation) (EURAPMON, European Raptor Monitoring Network).

References

  1. Albuja L, Montalvo D, Cáceres F, Jácome N (2012) Niveles de mercurio en aves silvestres de tres regiones mineras del sur del Ecuador. Politécnica 30(3):18–32Google Scholar
  2. Alho CJR, Lacher TE, Goncalves HC (1988) Environmental degradation in the Pantanal ecosystem. In Brazil, the world’s largest wetland, is being threatened by human activities. Bioscience 38(3):164–171.  https://doi.org/10.2307/1310449 CrossRefGoogle Scholar
  3. Ansara-Ross TM, Ross MJ, Wepener V (2013) The use of feathers in monitoring bioaccumulation of metals and metalloids in the South African endangered African grass-owl (Tyto capensis). Ecotoxicology 22(6):1072–1083.  https://doi.org/10.1007/s10646-013-1095-4 CrossRefGoogle Scholar
  4. Arribére MA, Ribeiro Guevara S, Sánchez RS, Gil MI, Román Ross G, Daurade LE, Kestelman AJ (2003) Heavy metals in the vicinity of a chlor-alkali factory in the upper Negro River ecosystem, Northern Patagonia, Argentina. Sci Total Environ 301(1–3):187–203.  https://doi.org/10.1016/S0048-9697(02)00301-7 CrossRefGoogle Scholar
  5. Ballejo F, De Santis LJ (2013) Dieta estacional del jote cabeza negra (Coragyps atratus) en un área rural y una urbana en el noroeste patagónico. El hornero 28(1):07–14Google Scholar
  6. Ballejo F, Lambertucci SA, Trejo A, De Santis LJ (2017) Trophic niche overlap among scavengers in Patagonia: additional support for the condor-vulture competition hypothesis. Bird Conservation International Vol 27. doi: https://doi.org/10.1017/S0959270917000211
  7. Barnes JG, Gerstenberger SL (2015) Using feathers to determine mercury contamination in peregrine falcons and their prey. J Raptor Res 49(1):43–58.  https://doi.org/10.3356/jrr-14-00045.1 CrossRefGoogle Scholar
  8. Barbar F, Werenkraut V, Morales JM, Lambertucci SA, Valentine JF (2015) Emerging Ecosystems Change the Spatial Distribution of Top Carnivores Even in Poorly Populated Areas. PLOS ONE 10 (3):e0118851.  https://doi.org/10.1371/journal.pone.0118851
  9. Behrooz RD, Mahmoud Ghasempouri S, Mishmast Nehi A, Nowrouzi M, Barghi M (2014) Mercury contamination in five owl species from Iran. Chem Speciat Bioavailab 26(3):191–195.  https://doi.org/10.3184/095422914X14035470360542 CrossRefGoogle Scholar
  10. Bellati J (2000) Comportamiento y abundancia relativa de rapaces de la Patagonia extraandina Argentina. Ornitología Neotropical 11:207–222Google Scholar
  11. Bellotti ML (2011) Mineria a cielo abierto versus glaciares en alerta roja en Argentina. Revista de Derecho de Daños (Rubinzal-Culzoni Editores) 2011(1):391–437.  https://doi.org/10.6092/unibo/amsacta/3085 CrossRefGoogle Scholar
  12. Bildstein KL (2004) Raptor migration in the Neotropics: patterns, processes, and consequences. Ornitol Neotrop 15:83–99Google Scholar
  13. Blázquez MC, Delibes-Mateos M, Vargas JM, Granados A, Delgado A, Delibes M (2016) Stable isotope evidence for turkey vulture reliance on food subsidies from the sea. Ecol Indic 63:332–336.  https://doi.org/10.1016/j.ecolind.2015.12.015 CrossRefGoogle Scholar
  14. Bowerman WW, Evans ED, Giesy JP, Postupalsky S (1994) Using feathers to assess risk of mercury and selenium to bald eagle reproduction in the Great Lakes region. Arch Environ Contam Toxicol 27(3):294–298.  https://doi.org/10.1007/BF00213162 CrossRefGoogle Scholar
  15. Broo B, Odsjo T (1981) Mercury levels in feathers of eagle-owls Bubo bubo in a captive, a reintroduced and a native wild population in SW Sweden. Ecography 4(4):270–277.  https://doi.org/10.1111/j.1600-0587.1981.tb01008.x CrossRefGoogle Scholar
  16. Buckley NJ (1999) Black vulture (Coragyps atratus). Birds N Am (411) 24Google Scholar
  17. Burger J, Gochfeld M (1997) Risk, mercury levels, and birds: relating adverse laboratory effects to field biomonitoring. Environ Res 75(2):160–172.  https://doi.org/10.1006/enrs.1997.3778 CrossRefGoogle Scholar
  18. Burnham KP, Anderson DR (2002) Model selection and multimodal inference: a practical information theoretic approach. Springer-Verlag, New YorkGoogle Scholar
  19. Bustos JC, Rocchi V (2008) Caracterización termopluviométrica de algunas estaciones meteorológicas de Río Negro y Neuquén. Comunicación Técnica N° 26, Area Recursos Naturales, Agrometeorología. INTA EE Bariloche, 29 pGoogle Scholar
  20. Cahill TM, Anderson DW, Elbert RA, Parley BP, Johnson DR (1998) Elemental profiles in feather samples from a mercury-contaminated lake in central California. Arch Environ Contam Toxicol 35(1):75–81.  https://doi.org/10.1007/s002449900352 CrossRefGoogle Scholar
  21. Champoux L, Masse DC, Evers D, Lane OP, Plante M, Timmermans STA (2006) Assessment of mercury exposure and potential effects on common loons (Gavia immer) in Québec. Developments in hydrobiology, limnology and aquatic birds. A.R. Hanson & J. J. Kerekes (eds.) (pp. 263–274)Google Scholar
  22. Chandler RM, Pyle P, Flannery ME, Long DJ, Howell SN (2010) Flight feather molt of turkey vultures. Wilson J Ornithol 122(2):354–360.  https://doi.org/10.1676/09-094.1 CrossRefGoogle Scholar
  23. Coleman JS, Fraser JD (1989) Habitat use and home ranges of black and turkey vultures. J Wildl Manag 53(3):782–792.  https://doi.org/10.2307/3809213 CrossRefGoogle Scholar
  24. CRBAS (Centro Regional Basilea para America del Sur) (2012) Proyecto “Almacenamiento y disposición ambientalmente adecuados de mercurio elemental y sus residuos en la República Argentina”. Proyecto binacional Argentina- Uruguay Documento de proyecto junio de 2012Google Scholar
  25. Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320(5874):335.  https://doi.org/10.1126/science.1154082 CrossRefGoogle Scholar
  26. Dauwe T, Bervoets L, Pinxten R, Blust R, Eens M (2003) Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environ Pollut 124(3):429–436.  https://doi.org/10.1016/S0269-7491(03)00044-7 CrossRefGoogle Scholar
  27. DeVault TL, Reinhart BD, Brisbin IL Jr, Rhodes OE Jr (2004) Home ranges of sympatric black and turkey vultures in South Carolina. Condor 106(3):706–711.  https://doi.org/10.1650/7461 CrossRefGoogle Scholar
  28. Driscoll CT, Han YJ, Chen CY, Evers DC, Lambert KF, Holsen TM, Munson RK (2007) Mercury contamination in forest and freshwater ecosystems in the northeastern United States. Bioscience 57(1):17–28.  https://doi.org/10.1641/B570106 CrossRefGoogle Scholar
  29. Eisler R (1985) Mercury hazards to fish, wildlife and invertebrates: a synoptic review. US Fish Wildlif Serv Biol Rep 85(10):1–63Google Scholar
  30. Eisler R (2006). Mercury hazards to living organisms. CRC Press, Taylor y Francis Group. USA, DOI:  https://doi.org/10.1201/9781420008838
  31. Espín S, Martínez-López E, Gómez-Ramírez P, María-Mojica P, García-Fernández AJ (2012) Razorbills (Alca torda) as bioindicators of mercury pollution in the southwestern Mediterranean. Mar Pollut Bull 64(11):2461–2470.  https://doi.org/10.1016/j.marpolbul.2012.07.045 CrossRefGoogle Scholar
  32. Espín S, Martínez-López E, Jiménez P, María-Mojica P, García-Fernández AJ (2014a) Effects of heavy metals on biomarkers for oxidative stress in griffon vulture (Gyps fulvus). Environ Res 129:59–68.  https://doi.org/10.1016/j.envres.2013.11.008 CrossRefGoogle Scholar
  33. Espín S, Martínez-López E, León-Ortega M, Calvo JF, García-Fernández AJ (2014b) Factors that influence mercury concentrations in nestling eagle owls (Bubo bubo). Sci Total Environ 470-471:1132–1139.  https://doi.org/10.1016/j.scitotenv.2013.10.063 CrossRefGoogle Scholar
  34. Evans BA (2013) Dynamics of a problematic vulture roost in southwest Florida and responses of vultures to roost-dispersal management efforts (Doctoral dissertation, Florida Gulf Coast University)Google Scholar
  35. Fallacara DM, Halbrook RS, French JB (2011) Toxic effects of dietary methylmercury on immune function and hematology in American kestrels (Falco sparverius). Environ Toxicol Chem 30(6):1320–1327.  https://doi.org/10.1002/etc.494 CrossRefGoogle Scholar
  36. Ferguson-Lees J, Christie DA (2001) Raptors of the world helm identification guides. Helm edition, LondonGoogle Scholar
  37. Finley MT, Stendell RC (1978) Survival and reproductive success of black ducks fed methyl mercury. Environ Pollut 16(1):51–64.  https://doi.org/10.1016/0013-9327(78)90137-4 CrossRefGoogle Scholar
  38. Furness RW, Greenwood JJD (1993) Birds as monitors of environmental change. Chapman & Hall Press, London.  https://doi.org/10.1007/978-94-015-1322-7 CrossRefGoogle Scholar
  39. García Fernández AJ, Romero D, Martínez-López E, Navas I, Pulido M, María-Mojica P (2005) Environmental lead exposure in the European kestrel (Falco tinnunculus) from southeastern Spain: the influence of leaded gasoline regulations. Bull Environ Contamin Toxicol 74(2):314–319.  https://doi.org/10.1007/s00128-004-0586-7 CrossRefGoogle Scholar
  40. García-Fernández AJ, (2014) Avian ecotoxicology. In: Wexler P (Ed.), Encyclopedia of toxicology, 3rd edition vol 2. Elsevier Inc., Academic Press, pp. 289–294Google Scholar
  41. García-Fernández AJ, Calvo JF, Martínez-López E, María-Mojica P, Martínez JE (2008) Raptor ecotoxicology in Spain. A review on persistent environmental contaminants. AMBIO-J Hum Environ 37(6):432–439. https://doi.org/10.1579/0044-7447(2008)37[432:REISAR]2.0.CO;2Google Scholar
  42. García-Fernández AJ, Espín S, Martínez-López E (2013) Feathers as a biomonitoring tool of polyhalogenated compounds: a review. Environ Sci Technol 47(7):3028–3043.  https://doi.org/10.1021/es302758x CrossRefGoogle Scholar
  43. Garitano-Zavala Á, Cotín J, Borràs M, Nadal J (2010) Trace metal concentrations in tissues of two tinamou species in mining areas of Bolivia and their potential as environmental sentinels. Environ Monit Assess 168(1–4):629–644.  https://doi.org/10.1007/s10661-009-1139-7 CrossRefGoogle Scholar
  44. Gómez-Ramírez P, Martínez-López E, María-Mojica P, León-Ortega M, García-FernándezAJ (2011) Blood lead levels and δ-ALAD inhibition in nestlings of Eurasian Eagle Owl (Bubo bubo) to assess lead exposure associated to an abandoned mining area. Ecotoxicology 20 (1):131–138.  https://doi.org/10.1007/s10646-010-0563-3
  45. Graña Grilli M, Lambertucci SA, Therrien JF, Bildstein KL (2017) Wing size but not wing shape is related to migratory behavior in a soaring bird. J Avian Biol 48(5):669–678.  https://doi.org/10.1111/jav.01220 CrossRefGoogle Scholar
  46. Guevara S, Massaferro J, Villarosa G, Arribére M, Rizzo A (2002) Heavy metal contamination in sediments of Lake Nahuel huapi, Nahuel huapi national park, northern Patagonia, Argentina. Water Air Soil Pollut 137(1–4):21–44.  https://doi.org/10.1023/A:1015557130580 CrossRefGoogle Scholar
  47. Harmata AR (2011) Environmental contaminants in tissues of bald eagles sampled in southwestern Montana, 2006–2008. The Journal of Raptor Research 45(2):119–135.  https://doi.org/10.3356/JRR-10-37.1 CrossRefGoogle Scholar
  48. Harmata AR, Restani M (2013) Lead, mercury, selenium, and other trace elements in tissues of golden eagles from southwestern Montana, USA. J Wildl Dis 49(1):114–124.  https://doi.org/10.7589/2012-01-004 CrossRefGoogle Scholar
  49. Haskins SD, Kelly DG, Weir RD (2013) Trace element analysis of turkey vulture (Cathartess aura) feathers. J Radioanal Nucl Chem 295(2):1331–1339.  https://doi.org/10.1007/s10967-012-1910-z CrossRefGoogle Scholar
  50. Haynes S, Gragg RD, Johnson E, Robinson L, Orazio CE (2006) An evaluation of a reagentless method for the determination of total mercury in aquatic life. Water Air Soil Pollut 172(1):359–374.  https://doi.org/10.1007/s11270-006-9101-6 CrossRefGoogle Scholar
  51. Henny CJ, Blus LJ, Hoffman DJ, Grove RA (1994) Lead in hawks, falcons and owls downstream from a mining site on the Coeur d’Alene River, Idaho. Environ Monit Assess 29(3):267–288.  https://doi.org/10.1007/BF00547991 CrossRefGoogle Scholar
  52. Holland AE, Byrne ME, Bryan AL, DeVault TL, Rhodes OE, Beasley JC (2017) Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus) and turkey vultures (Cathartes aura). PLoS One 12(7):e0179819.  https://doi.org/10.1371/journal.pone.0179819 CrossRefGoogle Scholar
  53. Hylander LD, Silva EC, Oliveira LJ, Silva SA, Kunze EK and Silva DX (1994) Mercury levels in Alto Pantanal: a screening study. Ambio 33:478-484 (Sweden)Google Scholar
  54. Jackson AK, Evers DC, Folsom SB, Condon AM, Diener J, Goodrick LF, McGann AJ, Schmerfeld J, Cristol DA (2011) Mercury exposure in terrestrial birds far downstream of an historical point source. Environ Pollut 159(12):3302–3308.  https://doi.org/10.1016/j.envpol.2011.08.046 CrossRefGoogle Scholar
  55. Leonzio C, Bianchi N, Gustin M, Sorace A, Ancora S (2009) Mercury, lead and copper in feathers and excreta of small passerine species in relation to foraging guilds and age of feathers. Bull Environ Contam Toxicol 83(5):693–697.  https://doi.org/10.1007/s00128-009-9789-2 CrossRefGoogle Scholar
  56. Lewis SA, Furness RW (1991) Mercury accumulation and excretion in laboratory reared black-headed gull, (Larus ridibundus) chicks. Arch Environ Contam Toxicol 21(2):316–320.  https://doi.org/10.1007/BF01055352 CrossRefGoogle Scholar
  57. Lodenius M, Solonen T (2013) The use of feathers of birds of prey as indicators of metal pollution. Ecotoxicology 22(9):1319–1334.  https://doi.org/10.1007/s10646-013-1128-z CrossRefGoogle Scholar
  58. Martínez A, Crespo D, Fernández JÁ, Aboal JR, Carballeira A (2012) Selection of flight feathers from Buteo Buteo and Accipiter gentilis for use in biomonitoring heavy metal contamination. Sci Total Environ 425:254–261.  https://doi.org/10.1016/j.scitotenv.2012.03.017 CrossRefGoogle Scholar
  59. Martínez-López E, Martínez JE, María-Mójica P, Peñalver J, Pulido M, Calvo JF, García-Fernández AJ (2004) Lead in feathers and δ-aminolevulinic acid dehydratase activity in three raptor species from an unpolluted Mediterranean forest (southeastern Spain). Arch Environ Contam Toxicol 47(2):270–275.  https://doi.org/10.1007/s00244-004-3027-z CrossRefGoogle Scholar
  60. Martínez-López E, María-Mójica P, Martínez JE, Calvo JF, Romero D, García-Fernández AJ (2005) Cadmium in feathers of adults and blood of nestlings of three raptor species from a nonpolluted Mediterranean forest, southeastern Spain. Bull Environ Contam Toxicol 74(3):477–484.  https://doi.org/10.1007/s00128-005-0610-6 CrossRefGoogle Scholar
  61. Martínez-López E, Espín S, Barbar F, Lambertucci SA, Gómez-Ramírez P, García-Fernández AJ (2015) Contaminants in the southern tip of South America: analysis of organochlorine compounds in feathers of avian scavengers from Argentinean Patagonia. Ecotoxicol Environ Saf 115:83–92.  https://doi.org/10.1016/j.ecoenv.2015.02.011 CrossRefGoogle Scholar
  62. Monteiro LR, Furness RW (2001) Kinetics, dose-response, and excretion of methylmercury in free-living adult Cory’s shearwaters. Environ Sci Technol 35(4):739–746.  https://doi.org/10.1021/es000114a CrossRefGoogle Scholar
  63. Morel FM, Kraepiel AM, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29(1):543–566.  https://doi.org/10.1146/annurev.ecolsys.29.1.543 CrossRefGoogle Scholar
  64. Movalli PA (2000) Heavy metal and other residues in feathers of laggar falcon Falco biarmicus jugger from six districts of Pakistan. Environ Pollut 109(2):267–275.  https://doi.org/10.1016/S0269-7491(99)00258-4 CrossRefGoogle Scholar
  65. Nichols J, Bradbury S, Swartout J (1999) Derivation of wildlife values for mercury. J Toxicol Environ Health B Crit Rev 2(4):325–355.  https://doi.org/10.1080/109374099281160 CrossRefGoogle Scholar
  66. Novaes WG, Cintra R (2013) Factors influencing the selection of communal roost sites by the black vulture Coragyps atratus (Aves: Cathartidae) in an urban area in Central Amazon. Zoologia (Curitiba) 30(6):607–614.  https://doi.org/10.1590/S1984-46702013005000014 CrossRefGoogle Scholar
  67. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, Loucks CJ (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2Google Scholar
  68. Ortega HG, Lopez M, Salvaggio JE, Reimers R, Hsiao-Lin C, Bollinger JE, George W (1997) Lymphocyte proliferative response and tissue distribution of methylmercury sulfide and chloride in exposed rats. J Toxicol Environ Health A Curr Issues 50(6):605–616.  https://doi.org/10.1080/009841097160302 CrossRefGoogle Scholar
  69. Ortego J, Jiménez M, Díaz M, Rodríguez RC (2006) Mercury in feathers of nestling eagle owls, Bubo bubo L., and muscle of their main prey species in Toledo province, central Spain. Bull Environ Contam Toxicol 76(4):648–655.  https://doi.org/10.1007/s00128-006-0969-z CrossRefGoogle Scholar
  70. Ortiz R (2008) Las empresas trasnacionales en la minería argentina: seguridad jurídica para las empresas, inseguridad ambiental e incumplimiento de los derechos para las comunidades locales. FOCO, Foro Ciudadano de Participacion por la Justicia y los Derechos Humanos, Programa de Vigilancia Social de las Empresas TransnacionalesGoogle Scholar
  71. Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D (2006) Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci Total Environ 370(1):147–156.  https://doi.org/10.1016/j.scitotenv.2006.06.023 CrossRefGoogle Scholar
  72. Palma L, Beja P, Tavares PC, Monteiro LR (2005) Spatial variation of mercury levels in nesting Bonelli’s eagles from southwest Portugal: effects of diet composition and prey contamination. Environ Pollut 134(3):549–557.  https://doi.org/10.1016/j.envpol.2004.05.017 CrossRefGoogle Scholar
  73. Parks JW, Sutton JA, and Hollinger JD (1984) Mercury pollution in the Wabigoon-English River system of north-western Ontario, and possible remedial measures. Final Report. Government of Canada, Ottawa, Ontario, CanadaGoogle Scholar
  74. PNUMA (Programa de las Naciones Unidas para el Medio Ambiente) (2002) Evaluación mundial sobre el mercurio. Publicado por el PNUMA Productos Quimicos, Ginebra, Suiza, pp 1–303Google Scholar
  75. Pozo JM (2013) Insecticidas organoclorados en plumas de jote negro (Coragyps atratus) del Noroeste de la Patagonia Argentina. Universidad de Murcia, Proyecto Fin de CarreraGoogle Scholar
  76. Rattner B, Golden N, Toschik P, McGowan P, Custer T (2008) Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays. Arch Environ Contam Toxicol 54(1):114–122.  https://doi.org/10.1007/s00244-007-9004-6 CrossRefGoogle Scholar
  77. Ribeiro AR, Eira C, Torres J, Mendes P, Miquel J, Soares AMVM, Vingada J (2009) Toxic element concentrations in the razorbill Alca torda (Charadriiformes, Alcidae) in Portugal. Arch Environ Contam Toxicol 56(3):588–595.  https://doi.org/10.1007/s00244-008-9215-5 CrossRefGoogle Scholar
  78. Rigét F, Møller P, Dietz R, Nielsen TG, Asmund G, Strand J, Hobson KA (2007) Transfer of mercury in the marine food web of West Greenland. J Environ Monit 9(8):877–883.  https://doi.org/10.1039/b704796g CrossRefGoogle Scholar
  79. Rizzo A, Arcagni M, Arribére M, Bubach D, Guevara SR (2011) Mercury in the biotic compartments of northwest Patagonia lakes, Argentina. Chemosphere 84(1):70–79.  https://doi.org/10.1016/j.chemosphere.2011.02.052 CrossRefGoogle Scholar
  80. Romero Gámez RM (2013) Metales pesados en plumas de un ave carroñera de la Patagoinia Argentina. Proyecto Fin de Carrera, Universidad de MurciaGoogle Scholar
  81. Sanpera C, Moreno R, Ruiz X, Jover L (2007) Audouin’s gull chicks as bioindicators of mercury pollution at different breeding locations in the western Mediterranean. Mar Pollut Bull 54(6):691–696.  https://doi.org/10.1016/j.marpolbul.2007.01.016 CrossRefGoogle Scholar
  82. Scheuhammer AM (1991) Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals. Environ Pollut 71(2):329–375.  https://doi.org/10.1016/0269-7491(91)90036-V CrossRefGoogle Scholar
  83. Snyder NF, Johnson EV, Clendenen DA (1987) Primary molt of California condors. Condor 89(03):468–485.  https://doi.org/10.2307/1368637 CrossRefGoogle Scholar
  84. Solonen T, Lodenius M (1984) Mercury in Finnish sparrowhawks Accipiter nisus. Ornis Fennica 61(2):58–63Google Scholar
  85. Solonen T, Lodenius M (1990) Feathers of birds of prey as indicators of mercury contamination in southern Finland. Ecography 13(3):229–237.  https://doi.org/10.1111/j.1600-0587.1990.tb00613.x CrossRefGoogle Scholar
  86. Suchanek TH, Richerson PJ, Woodward LA, Slotton DG, Holts LJ, and Woodmansee CE (1993) A survey and evaluation of mercury in: sediment, water, plankton, periphyton, benthic invertebrates and fishes within the aquatic ecosystem of Clear Lake, California. Preliminary report, prepared for the US Environmental Protection Agency, region, 9Google Scholar
  87. Suchanek TH, Mullen LH, Lamphere BA, Richerson PJ, Woodmansee CE, Slotton DG, Woodward LA (1998) Redistribution of mercury from contaminated lake sediments of Clear Lake, California. Water Air Soil Pollut 104(1–2):77–102.  https://doi.org/10.1023/A:1004980026183 CrossRefGoogle Scholar
  88. Wiemeyer SN, Jurek RM, Moore JF (1986) Environmental contaminants in surrogates, foods, and feathers of California condors (Gymnogyps Californianus). Environ Monit Assess 6(1):91–111.  https://doi.org/10.1007/BF00394290 CrossRefGoogle Scholar
  89. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17(2):146–160.  https://doi.org/10.1002/etc.5620170203 CrossRefGoogle Scholar
  90. Zolfaghari G, Esmaili-Sari A, Ghasempouri SM, Kiabi BH (2007) Examination of mercury concentration in the feathers of 18 species of birds in southwest Iran. Environ Res 104(2):258–265.  https://doi.org/10.1016/j.envres.2006.12.002 CrossRefGoogle Scholar
  91. Zolfaghari G, Esmaili-Sari A, Ghasempouri SM, Baydokhti RR, Kiabi BH (2009) A multispecies-monitoring study about bioaccumulation of mercury in Iranian birds (Khuzestan to Persian Gulf): effect of taxonomic affiliation and trophic level. Environ Res 109(7):830–836.  https://doi.org/10.1016/j.envres.2009.07.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alessandro Di Marzio
    • 1
  • Pilar Gómez-Ramírez
    • 1
    • 2
  • Facundo Barbar
    • 3
  • Sergio Agustín Lambertucci
    • 3
  • Antonio Juan García-Fernández
    • 1
    • 2
  • Emma Martínez-López
    • 1
    • 2
    Email author
  1. 1.Area of Toxicology, Department of Health Sciences, Faculty of Veterinary MedicineUniversity of MurciaMurciaSpain
  2. 2.Laboratory of Toxicology, Biomedical Research Institute of Murcia (IMIB-Arrixaca)University of MurciaMurciaSpain
  3. 3.Grupo de Biología de la Conservación, Laboratorio EcotonoINIBIOMA (CONICET-Universidad Nacional del Comahue)BarilocheArgentina

Personalised recommendations