Environmental Science and Pollution Research

, Volume 26, Issue 6, pp 5238–5250 | Cite as

Fate of Lu(III) sorbed on 2-line ferrihydrite at pH 5.7 and aged for 12 years at room temperature. I: insights from ICP-OES, XRD, ESEM, AsFlFFF/ICP-MS, and EXAFS spectroscopy

  • Nicolas FinckEmail author
  • Muriel BoubyEmail author
  • Kathy Dardenne
Analytical methods for characterization of nano- and micro-objects


Two-line ferrihydrite (2LFh) was aged for 12 years under ambient conditions and sheltered from light in the presence of Lu(III) used as surrogate for trivalent actinides. 2LFh aging produced hematite rhombohedra with overgrown acicular goethite particles. Analysis of the homogeneous suspension by asymmetrical flow field-flow fractionation (AsFlFFF) coupled to ICP-MS indicated that particles have a mean hydrodynamic diameter of about 140 nm and the strong correlation of the Fe and Lu fractograms hinted at a structural association of the lanthanide with the solid phase(s). Unfortunately, recoveries were low and thus results cannot be considered representative of the whole sample. The suspension was centrifuged and X-ray absorption spectroscopy (XAS) at the Lu L3-edge on the settled particles indicated that Lu(III) is sixfold coordinated by oxygen atoms, pointing to a retention by structural incorporation within particles. This result is consistent with AsFlFFF results on the same suspension without centrifugation. The detection of next nearest Fe and O atoms were consistent with the structure of goethite, ruling out incorporation within hematite. After centrifugation of the suspension, only nanoparticulate needle-like particles, very likely goethite, could be detected in the supernatant by ESEM. AsFlFFF data of the supernatant were comparable to that obtained for the homogeneous suspension, whereas XAS indicated that Lu(III) is predominantly present as dissolved species in the supernatant. Results from both techniques can be interpreted as a major fraction of Lu present as aqueous ions and a minor fraction as structurally incorporated. Findings from this study are corroborated by STEM-HAADF data and results from DFT calculations in a companion paper.


Ferrihydrite transformation Hematite Goethite Lutetium Flow field-flow fractionation ICP-MS X-ray absorption spectroscopy 



We thank S. Heck (KIT-INE) for ICP-OES, F. Geyer (KIT-INE) for ICP-MS analyses, and E. Soballa (KIT-INE) for SEM measurements. We acknowledge the synchrotron light source ANKA (Karlsruhe, Germany) for the provision of synchrotron radiation beamtime.


  1. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculations and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58(12):7565–7576. CrossRefGoogle Scholar
  2. Bianconi A, Dell’Ariccia M, Gargano A, Natoli CR (1983) Bond length determination using XANES. In: Bianconi A, Incoccia L, Stipcich S (eds) EXAFS and near edge structure. Springer-Verlag, Berlin, pp 57–61. CrossRefGoogle Scholar
  3. Bots P, Shaw S, Law GTW, Marshall TA, Mosselmans JFW, Morris K (2016) Controls on the fate and speciation of Np(V) during iron (oxyhydr)oxide crystallization. Environ Sci Technol 50(7):3382–3390. CrossRefGoogle Scholar
  4. Bouby M, Geckeis H, Manh TN, Yun JI, Dardenne K, Schafer T, Walther C, Kim JI (2004) Laser-induced breakdown detection combined with asymmetrical flow field-flow fractionation: application to iron oxi/hydroxide colloid characterization. J Chromatogr A 1040(1):97–104. CrossRefGoogle Scholar
  5. Bouby M, Geckeis H, Geyer FW (2008) Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles. Anal Bioanal Chem 392(7-8):1447–1457. CrossRefGoogle Scholar
  6. Bouby M, Geckeis H, Lutzenkirchen J, Mihai S, Schäfer T (2011) Interaction of bentonite colloids with Cs, Eu, Th and U in presence of humic acid: a flow field-flow fractionation study. Geochim Cosmochim Acta 75(13):3866–3880. CrossRefGoogle Scholar
  7. Bouby M, Finck N, Geckeis H (2012) Flow field-flow fractionation (FlFFF) coupled to sensitive detection techniques: a way to examine radionuclide interactions with nanoparticles. Mineral Mag 76(7):2709–2721. CrossRefGoogle Scholar
  8. Bouby M, Finck N, Geckeis H (2015) Synthetic smectites colloids: characterization of nanoparticles after co-precipitation in the presence of lanthanides and tetravalent elements (Zr, Th). Chromatography 2(3):545–566. CrossRefGoogle Scholar
  9. Boudeulle M, Muller JP (1988) Structural characteristics of hematite and goethite and their relationships with kaolinite in a laterite from Cameroon—a TEM study. Bull Mineral 111:149–166Google Scholar
  10. Carlson L, Schwertmann U (1981) Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim Cosmochim Acta 45(3):421–429. CrossRefGoogle Scholar
  11. Chivot J (2004) Thermodynamique des produits de corrosion : Fonctions thermodynamiques, diagrammes de solubilité, diagrammes E-pH des systèmes Fe-H2O, Fe-CO2-H2O, Fe-S-H2O, Cr-H2O et Ni-H2O en fonction de la température. ANDRA, Châtenay-MalabryGoogle Scholar
  12. Cornell RM (1985) Effect of simple sugars on the alkaline transformation of ferrihydrite into goethite and hematite. Clays Clay Min 33(3):219–227. CrossRefGoogle Scholar
  13. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrences and uses. VCH, WeinheimGoogle Scholar
  14. Cornell RM, Giovanoli R, Schindler PW (1987) Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkalin media. Clays Clay Min 35(1):21–28. CrossRefGoogle Scholar
  15. Cornell RM, Giovanoli R, Schneider W (1989) Review of the hydrolysis of iron(III) and the crystallization of amorphous iron(III) hydroxide hydrate. J Chem Technol Biotechnol 46:115–134Google Scholar
  16. Cornell RM, Schneider W, Giovanoli R (1992) The effect of nickel on the conversion of amorphous iron(III) hydroxide into more crystalline iron-oxides in alkaline media. J Chem Technol Biotechnol 53:73–79Google Scholar
  17. Cudennec Y, Lecerf A (2006) The transformation of ferrihydrite into goethite end hematite, revised J. Solid State Chem 179(3):716–722. CrossRefGoogle Scholar
  18. Dardenne K, Schafer T, Denecke MA, Rothe J, Kim JI (2001) Identification and characterization of sorbed lutetium on 2-line ferrihydrite by sorption data modeling. TRLFS EXAFS Radiochim Acta 89(7):469–479. CrossRefGoogle Scholar
  19. Dardenne K, Schafer T, Lindqvist-Reis P, Denecke MA, Plaschke M, Rothe J, Kim JI (2002) Low temperature XAFS investgations on the lutetium binding changes during the 2-line ferrihydrite alteration process. Environ Sci Technol 36(23):5092–5099. CrossRefGoogle Scholar
  20. Finck N, Schlegel ML, Bosbach D (2009) Sites of Lu(III) sorbed to and coprecipitated with hectorite. Environ Sci Technol 43(23):8807–8812. CrossRefGoogle Scholar
  21. Finck N, Bouby M, Dardenne K, Geckeis H (2012) Characterization of Eu(III) co-precipitated with and adsorbed on hectorite: from macroscopic crystallites to nanoparticles. Mineral Mag 76(7):2723–2740. CrossRefGoogle Scholar
  22. Finck N, Nedel S, Dideriksen K, Schlegel ML (2016) Trivalent actinide uptake by iron (hydr)oxides. Environ Sci Technol 50(19):10428–10436. CrossRefGoogle Scholar
  23. Ford RG, Bertsch PM, Farley KJ (1997) Changes in transition and heavy metal partitioning during hydrous iron oxide aging. Environ Sci Technol 31(7):2028–2033. CrossRefGoogle Scholar
  24. Freyria FS, Barrera G, Tiberto P, Belluso E, Levy D, Saracco G, Allia P, Garrone E, Bonelli B (2013) Eu-doped alpha-Fe2O3 nanoparticles with modified magnetic properties. J Solid State Chem 201:302–311. CrossRefGoogle Scholar
  25. Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260(5113):1456–1465. CrossRefGoogle Scholar
  26. Giddings JC, Yang FJ, Myers MN (1976) Theoretical and experimental characterization of flow field-flow fractionation. Anal Chem 48(8):1126–1132. CrossRefGoogle Scholar
  27. Hazemann JL, Berar JF, Manceau A (1991) Rietveld studies of the aluminium-iron substitution in synthetic goethite. Mater Sci Forum 79:821–826. CrossRefGoogle Scholar
  28. Heberling F, Vinograd VL, Polly R, Gale JD, Heck S, Rothe J, Bosbach D, Geckeis H, Winkler B (2014) A thermodynamic adsorption/entrapment model for selenium(IV) coprecipitation with calcite. Geochim Cosmochim Acta 134:16–38. CrossRefGoogle Scholar
  29. Hiemstra T, Van Riemsdijk WH (2009) A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density. Geochim Cosmochim Acta 73(15):4423–4436. CrossRefGoogle Scholar
  30. Huber F, Enzmann F, Wenka A, Bouby M, Dentz M, Schafer T (2012) Natural micro-scale heterogeneity induced solute and nanoparticle retardation in fractured crystalline rock. J Contam Hydrol 133:40–52. CrossRefGoogle Scholar
  31. Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98(7):2549–2586. CrossRefGoogle Scholar
  32. Lion LW, Altmann RS, Leckie JO (1982) Trace-metal adsorption characteristics of estuarine particulate matter: evaluation of contributions of iron/manganese oxide and organic surface coatings. Environ Sci Technol 16(10):660–666. CrossRefGoogle Scholar
  33. Lu N, Kung KS, Mason CFV, Triay IR, Cotter CR, Pappas AJ, Pappas MEG (1998) Removal of plutonium-239 and americium-241 from Rocky Flats soils by leaching. Environ Sci Technol 32(3):370–374. CrossRefGoogle Scholar
  34. Marshall TA, Morris K, Law GTW, Livens FR, Mosselmans JFW, Bots P, Shaw S (2014) Incorporation of uranium into hematite during crystallization from ferrihydrite. Environ Sci Technol 48(7):3724–3731. CrossRefGoogle Scholar
  35. Maslen EN, Streltsov VA, Streltsova NR, Ishizawa N (1994) Synchrotron X-ray study of the electron density in α-Fe2O3. Acta Crystallogr B 50(4):435–441. CrossRefGoogle Scholar
  36. Nagano T, Mitamura H, Nakayama S, Nakashima S (1999) Formation of goethite and hematite from neodymium-containing ferrihydrite suspensions. Clays Clay Min 47(6):748–754. CrossRefGoogle Scholar
  37. Ngo Manh T, Geckeis H, Kim JI, Beck HP (2001) Application of the flow field flow fractionation (FFFF) to the characterization of aquatic humic colloids: evaluation and optimization of the method. Colloids Surf A Physicochem Eng Asp 181(1-3):289–301. CrossRefGoogle Scholar
  38. Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev YY, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak production association, Russia. Science 314(5799):638–641. CrossRefGoogle Scholar
  39. Ohta A, Kagi H, Nomura M, Tsuno H, Kawabe I (2009) Coordination study of rare earth elements on Fe oxyhydroxide and Mn dioxides: part II. Correspondence of structural change to irregular variations of partitioning coefficients and tetrad effect variations appearing in interatomic distances. Am Mineral 94(4):476–486. CrossRefGoogle Scholar
  40. Persson I, D'Angelo P, De Panfilis S, Sandstrom M, Eriksson L (2008) Hydration of lanthanoid(III) ions in aqueous solution and crystalline hydrates studied by EXAFS spectroscopy and crystallography : the myth of the « gadolinium break ». Chem Eur J 14(10):3056–3066. CrossRefGoogle Scholar
  41. Phelan FR Jr, Bauer BJ (2007) Simulation of nanotube separation in field-flow fractionation (FFF). Chem Eng Sci 62(17):4620–4635. CrossRefGoogle Scholar
  42. Phelan FR Jr, Bauer BJ (2009) Comparison of steric effects in the modeling of sphere and rodlike particles in field-flow fractionation. Chem Eng Sci 64(8):1747–1758. CrossRefGoogle Scholar
  43. Qi Z, Liu M, Chen Y, Zhang G, Xu M, Shi C, Zhang W, Yin M, Xie Y (2007) Local structure of nanocrystalline Lu2O3:Eu studied by X-ray absorption spectroscopy. J Phys Chem C 111(5):1945–1950. CrossRefGoogle Scholar
  44. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541. CrossRefGoogle Scholar
  45. Rothe J, Butorin S, Dardenne K, Denecke MA, Kienzler B, Loble M, Metz V, Seibert A, Steppert M, Vitova T, Walther C, Geckeis H (2012) The INE-beamline for actinide science at ANKA. Rev Sci Instrum 83(4):043105. CrossRefGoogle Scholar
  46. Schäfer T, Artinger R, Dardenne K, Bauer A, Schuessler W, Kim JI (2003) Colloid-borne americium migration in Gorleben groundwater: significance of iron secondary phase transformation. Environ Sci Technol 37(8):1528–1534. CrossRefGoogle Scholar
  47. Schimpf ME, Caldwell K, Giddings JC (2000) Field-flow fractionation handbook. Wiley-Interscience, John Wiley & Sons, New York ISBN: 978-0471184300Google Scholar
  48. Schmidt M, Stumpf T, Marques Fernandes M, Walther C, Fanghänel T (2008) Charge compensation in solid solutions. Angew Chem Int Ed 47(31):5846–5850. CrossRefGoogle Scholar
  49. Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory. Preparation and characterization. VCH, WeinheimGoogle Scholar
  50. Schwertmann U, Murad E (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Min 31(4):277–284. CrossRefGoogle Scholar
  51. Shannon RD (1976) Revised effective ionic radii and systemaic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5):751–767. CrossRefGoogle Scholar
  52. Sharma V, Park K, Srinivasarao M (2009) Shape separation of gold nanorods using centrifugation. Proc Natl Acad Sci 106(13):4981–4985. CrossRefGoogle Scholar
  53. Stegemeier JP, Reinsch BC, Lentini CJ, Dale JG, Kim CS (2015) Aggregation of nanoscale iron oxyhydroxides and corresponding effect on metal uptake, retention, and speciation: II. Temperature and time. Geochim Cosmochim Acta 148:113–129. CrossRefGoogle Scholar
  54. Stumpf S, Stumpf S, Dardenne K, Hennig C, Foerstendorf H, Klenze R, Fanghänel T (2006) Sorption of Am(III) onto 6-line ferrihydrite and its alteration products: investigations by EXAFS. Environ Sci Technol 40(11):3522–3528. CrossRefGoogle Scholar
  55. Sun T, Paige CR, Snodgrass WJ (1996) The effect of cadmium on the transformation of ferrihydrite into crystalline products at pH 8. Water Air Soil Pollut 91(3-4):307–325. CrossRefGoogle Scholar
  56. Wahlund KG, Giddings JC (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59(9):1332–1339. CrossRefGoogle Scholar
  57. Wijnhoven JEGJ, Koorn JP, Poppe H, Kok WT (1996) Influence of injected mass and ionic strength on retention of water-soluble polymers and proteins in hollow-fibre flow field-flow fractionation. J Chromatogr A 732(2):307–315. CrossRefGoogle Scholar
  58. Yokosawa T, Prestat E, Polly R, Bouby M, Dardenne K, Finck N, Haigh SJ, Denecke MA, Geckeis H (2018) Fate of Lu(III) sorbed on 2-lin ferrihydrite at pH 5.7 and aged for 12 years at room temperature. II: insights from STEM-EDXS and DFT calculations. Environ Sci Pollut Res (In this issue)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Nuclear Waste Disposal (INE)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations