Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9708–9721 | Cite as

Trace metal occurrence in Mediterranean seaweeds

  • Stefania Squadrone
  • Paola Brizio
  • Marco Battuello
  • Nicola Nurra
  • Rocco Mussat Sartor
  • Anna Riva
  • Mariachiara Staiti
  • Alessandro Benedetto
  • Daniela Pessani
  • Maria Cesarina Abete
Research Article
  • 94 Downloads

Abstract

Seaweeds have been used as animal feed since a long time and are consumed as food in several cultures. In fact, macroalgae are a source of protein, fiber, polyunsaturated fat, and minerals. The concentration of trace elements was determined in dominant macroalga species from three sites of the northwestern Mediterranean Sea. A high interspecies variability was observed, with higher metal levels in brown and green than those in red seaweeds. The maximum values set by European regulations for arsenic, mercury, and cadmium in food and feed were never exceeded, but a few samples were very close to limits set for mercury. Conversely, the maximum limit for lead in feed was exceeded in all species from one of the considered sites. Analogously, lead in seaweeds could constitute a potential risk for human health, due to the exceeding of the maximum value set for food supplements.

Keywords

Trace elements Seaweeds Mediterranean Sea Feed Food Lead 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_1280_MOESM1_ESM.docx (14 kb)
Table S1 (DOCX 13 kb)
11356_2018_1280_MOESM2_ESM.doc (48 kb)
Table S2 (DOC 48 kb)
11356_2018_1280_MOESM3_ESM.doc (81 kb)
Table S3 (DOC 81 kb)

References

  1. Agency for Toxic Substances and Disease Registry, ATSDR (2008). Toxicological profile for aluminum, pp 357Google Scholar
  2. Akcali I, Kucuksezgin F (2011) A biomonitoring study: heavy metals in macroalgae from eastern Aegean coastal areas. Mar Pollut Bull 62(2011):637–645.  https://doi.org/10.1016/j.marpolbul.2010.12.021 CrossRefGoogle Scholar
  3. Astorga-Espanã MS, Rodriguez Galdon B, Rodrıguez Rodrıguez EM, Dıaz Romero C (2015) Mineral and trace element concentrations in seaweeds from the sub-Antarctic ecoregion of Magallanes (Chile). J Food Compos Anal 39:69–76.  https://doi.org/10.1016/j.jfca.2014.11.010 CrossRefGoogle Scholar
  4. Battuello M, Brizio P, Mussat Sartor R, Nurra N, Pessani D, Abete MC, Squadrone S (2016) Zooplankton from a North Western Mediterranean Area as a model of metal transfer in a marine environment. Ecol Indic 66:440–451.  https://doi.org/10.1016/j.ecolind.2016.02.018 CrossRefGoogle Scholar
  5. Bocanegra A, Bastida S, Benedí J, Ródenas S, Sánchez-Muniz FJ (2009) Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12(2):236–258.  https://doi.org/10.1089/jmf.2008.0151 CrossRefGoogle Scholar
  6. Britt DP, Baker JR (1990) Causes of death and illness in the native sheep of North Ronaldsay, Orkney. I. Adult sheep. Br Vet J 146(2):129–142.  https://doi.org/10.1016/0007-1935(90)90005-N CrossRefGoogle Scholar
  7. Campanella L, Conti ME, Cubadda F, Sucapane C (2003) Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environ Pollut 111:117–126CrossRefGoogle Scholar
  8. Caschetto S, Wollast R (1979) Vertical distribution of dissolved aluminium in the mediterranean sea. Mar Chem 7(2):141–155CrossRefGoogle Scholar
  9. Chou L, Wollast R (1997) Biogeochemical behavior and mass balance of dissolved aluminium in the western Mediterranean Sea. Deep-Sea Res II Top Stud Oceanogr 44(3):741–768.  https://doi.org/10.1016/S0967-0645(96)00092-6 CrossRefGoogle Scholar
  10. Conti ME, Cecchetti G (2003) A biomonitoring study: trace metals in algae and molluscs from Tyrrhenian coastal areas. Environ Res 93:99–112CrossRefGoogle Scholar
  11. Conti ME, Mecozzi M, Finoia MG (2015) Determination of trace metal baseline values in Posidonia oceanica, Cystoseira sp. and other marine environmental biomonitors: a quality control method for a study in South Tyrrhenian coastal areas. Environ Sci Pollut Res 22(5):3640–3651.  https://doi.org/10.1007/s11356-014-3603-3 CrossRefGoogle Scholar
  12. Edmunds WM (2011) Beryllium: environmental geochemistry and health effects, Reference Module in Earth Systems and Environmental Sciences, Encyclopedia of Environmental Health, 293–301.  https://doi.org/10.1016/B978-0-444-52272-6.00358-5
  13. EFSA (2011) Statement on the evaluation of a new study related to the bioavailability of aluminium in food. EFSA J 9:2157CrossRefGoogle Scholar
  14. EFSA (2012) Scientific opinion on safety and efficacy of cobalt carbonate as feed additive for ruminants, horses and rabbits. EFSA J 10(6):2727 27 ppGoogle Scholar
  15. EFSA (2013a) Scientific opinion on dietary reference values for manganese. EFSA J 3419:11Google Scholar
  16. EFSA (2013b) Scientific opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J 11(10):3408 103 ppGoogle Scholar
  17. EFSA (2014a) Scientific opinion on dietary reference values for chromium. EFSA J 12(10):3845, 25 ppCrossRefGoogle Scholar
  18. EFSA (2014b) Scientific opinion on dietary reference values for zinc. EFSA J 12(10):3844, 76 ppCrossRefGoogle Scholar
  19. Eisler RI (1981) Trace metal concentrations in marine organisms. Pergamon, OxfordGoogle Scholar
  20. Evans FD, Critchley AT (2014) Seaweeds for animal production use. J Appl Phycol 26(2):891–899.  https://doi.org/10.1007/s10811-013-0162-9 CrossRefGoogle Scholar
  21. Filella M, Belzile N, Lett MC (2007) Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth Sci Rev 80:195–217CrossRefGoogle Scholar
  22. Fries L (1982) Vanadium an essential element for some marine macroalgae. Planta 154(5):393–396.  https://doi.org/10.1007/BF01267804 CrossRefGoogle Scholar
  23. Hamid N, Ma Q, Boulom S, Liu T, Zheng Z, Balbas J, Robertson J (2015) Seaweed sustainability, food and non-food applications, Chapter 8—Seaweed minor constituents, pp 193–242Google Scholar
  24. Hawk A, Melsom S, Omang S (1974) Estimation of heavy metal pollution in two Norwegian fjord areas by analysis of the brown alga Ascophyllum nodosum. Environ Pollut 7:179–192CrossRefGoogle Scholar
  25. Ho YB (1988) Metal levels in three intertidal macroalgae in Hong Kong waters. Aquat Bot 29(4):367–372.  https://doi.org/10.1016/0304-3770(88)90080-0 CrossRefGoogle Scholar
  26. Institute of Medicine (2001) Iron. In: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; pp 290–2393Google Scholar
  27. International Agency for Research on Cancer (IARC) (1987) Monographs on the evaluation of carcinogenic risks to humans. In: Overall evaluation of carcinogenicity: an updating of monographs, vol. 1–42. Lyons: IARC, p 230–232Google Scholar
  28. Llorente-Mirandes T, Ruiz-Chancho MJ, Barbero M, Rubio R, López-Sánchez JF (2010) Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurrence of arsenobetaine. Chemosphere 81(7):867–875.  https://doi.org/10.1016/j.chemosphere.2010.08.007 CrossRefGoogle Scholar
  29. Makkar HPS, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, Ankers P (2016) Seaweeds for livestock diets: A review. Anim Feed Sci Technol 212:1–17CrossRefGoogle Scholar
  30. Malea P, Kevrekidis T (2014) Trace element patterns in marine macroalgae. Sci Total Environ 494–495:144–157CrossRefGoogle Scholar
  31. Malea P, Chatziapostolou A, Kevrekidis T (2015) Trace element seasonality in marine macroalgae of different functional-form groups. Mar Environ Res 103:18–26.  https://doi.org/10.1016/j.marenvres.2014.11.004 CrossRefGoogle Scholar
  32. Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters: applied monitoring and impact assessment. Springer, New York, pp 28–246Google Scholar
  33. Raab A, Stiboller M, Gajdosechova Z, Nelso J, Feldmann J (2016) Element content and daily intake from dietary supplements (nutraceuticals) based on algae, garlic, yeast fish and krill oils—should consumers be worried? J Food Compos Anal 53:49–60.  https://doi.org/10.1016/j.jfca.2016.09.008 CrossRefGoogle Scholar
  34. Rohani-Ghadikolaei K, Abdulalian E, Ng W-K (2012) Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J Food Sci Technol 49(6):774–780.  https://doi.org/10.1007/s13197-010-0220-0 CrossRefGoogle Scholar
  35. Rolison JM, Middag R, Stirling CH, Rijkenberg MJA, de Baar HJW (2015) Zonal distribution of dissolved aluminium in the Mediterranean Sea. Mar Chem 177:87–100.  https://doi.org/10.1016/j.marchem.2015.05.001 CrossRefGoogle Scholar
  36. Rubio C, Napoleone G, Luis-Gonzalez G, Gutierrez AJ, Gonzalez-Weller D, Hardisson A, Revert C (2017) Metals in edible seaweed. Chemosphere 173:572–579.  https://doi.org/10.1016/j.chemosphere.2017.01.064 CrossRefGoogle Scholar
  37. Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79(1):23–26.  https://doi.org/10.1016/S0308-8146(02)00171-1 CrossRefGoogle Scholar
  38. Squadrone S, Brizio P, Battuello M, Nurra N, Mussat Sartor R, Benedetto A, Pessani D, Abete MC (2017) A first report of rare earth elements in northwestern Mediterranean seaweeds. Mar Pollut Bull 122(1–2):236–242.  https://doi.org/10.1016/j.marpolbul.2017.06.048 CrossRefGoogle Scholar
  39. Stengel DB, Macken A, Morrison L, Morley N (2004) Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology. Mar Pollut Bull 48(9–10):902–909.  https://doi.org/10.1016/j.marpolbul.2003.11.014 CrossRefGoogle Scholar
  40. Storelli MM, Storelli A, Marcotrigiano GO (2001) Heavy metals in the aquatic environment of the Southern Adriatic Sea, Italy macroalgae, sediments and benthic species. Environ Int 26(7–8):505–509.  https://doi.org/10.1016/S0160-4120(01)00034-4 CrossRefGoogle Scholar
  41. Subba Rao PV, Mantri VA, Ganesan K (2007) Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem 102:215–218CrossRefGoogle Scholar
  42. Tanner HA, Brown TE, Eyster HC, Treharne RW (1960) The photosynthetic function of manganese and chloride. Ohio J Sci 60(4):231–234Google Scholar
  43. United States Environmental Protection Agency (EPA) (2014) Priority Pollutant List. https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf
  44. Viraraghavan T, Srinivasan A (2011) Thallium: environmental pollution and health effects, Reference Module in Earth Systems and Environmental Sciences, Encyclopedia of Environmental Health, pp 293–301Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Stefania Squadrone
    • 1
  • Paola Brizio
    • 1
  • Marco Battuello
    • 2
    • 3
  • Nicola Nurra
    • 2
    • 3
  • Rocco Mussat Sartor
    • 2
    • 3
  • Anna Riva
    • 1
  • Mariachiara Staiti
    • 1
  • Alessandro Benedetto
    • 1
  • Daniela Pessani
    • 2
  • Maria Cesarina Abete
    • 1
  1. 1.Istituto Zooprofilattico Sperimentale del PiemonteLiguria e Valle d’AostaTurinItaly
  2. 2.Department of Life Sciences and Systems BiologyUniversity of TurinTorinoItaly
  3. 3.Pelagosphera ScarlTurinItaly

Personalised recommendations