Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22446–22454 | Cite as

A synergetic biomineralization strategy for immobilizing strontium during calcification of the coccolithophore Emiliania huxleyi

  • Shiyong Sun
  • Mingxue Liu
  • Xiaoqin Nie
  • Faqin Dong
  • Wenyuan Hu
  • Daoyong Tan
  • Tingting Huo
Interface Effect of Ultrafine Mineral Particles and Microorganisms

Abstract

The coccolithophore species Emiliania huxleyi has one of the most global distributions in the modern oceans. They are characteristically covered with calcite scales called coccoliths. In this study, stable strontium immobilization during the calcification process was investigated to indirectly assess a proposed bioremediation approach for removing Sr2+ contamination from marine environments. Results indicate that E. huxleyi has high Sr2+ tolerance and removal efficiency in response to Sr2+ stress ranging from 5.6 to 105.6 ppm. Sr2+ immobilization during E. huxleyi calcification indicates a concentration-dependent synergistic mechanism. At lower concentrations of Sr2+ (25.6 ppm), Sr2+ is incorporated into coccoliths through competitive supply between Sr2+ and Ca2+. In addition, calcite productivity decreases with increased Sr2+ removal efficiency due to crystallographic transformation of coccoliths from hydrated calcite into aragonite at 55.6 ppm Sr2+. Further formation of strontianite at 105.6 ppm Sr2+ is due to precipitation of Sr2+ on the edge of the rims and radial arrays of the coccoliths. Our study implies that coccolithophores are capable of significant removal of Sr2+ from the marine environment.

Keywords

Calcification Coccolithophores Biological purification Strontium immobilization Biomineralization 

Notes

Acknowledgements

The present work was partly supported by the National Natural Science Foundation of China (41472310, 41502316), National Basic Research Program of China (973 Program: 2014CB846003), and The Longshan Academic Talent Research Support Program of the Southwest University of Science and Technology (17LZX419, 17LZXT05). We thanks Mr. Biaobiao Ma for helping revise the manuscript.

References

  1. Assmy P, Henjes J, Klaas C, Smetacek V (2007) Mechanisms determining species dominance in a phytoplankton bloom induced by the iron fertilization experiment EisenEx in the Southern Ocean. Ocean Deep Sea Res Pt I 54(3):340–362.  https://doi.org/10.1016/j.dsr.2006.12.005 CrossRefGoogle Scholar
  2. Benzerara K, Skouri-Panet F, Li J, Ferard C, Gugger M, Laurent T, Couradeau E, Ragon M, Cosmidis J, Menguy N, Margaret-Oliver I, Tavera R, Lopez-Garcia P, Moreira D (2014) Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci U S A 111(30):10933–10938.  https://doi.org/10.1073/pnas.1403510111 CrossRefGoogle Scholar
  3. Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82(1-3):197–225.  https://doi.org/10.1016/S0016-7061(97)00102-X CrossRefGoogle Scholar
  4. Chow JS, Lee C, Engel A (2015) The influence of extracellular polysaccharides, growth rate, and free coccoliths on the coagulation efficiency of Emiliania huxleyi. Mar Chem 175:5–17.  https://doi.org/10.1016/j.marchem.2015.04.010 CrossRefGoogle Scholar
  5. Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE Jr, López-García P (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336(6080):459–462.  https://doi.org/10.1126/science.1216171 CrossRefGoogle Scholar
  6. Dong H, Lu A (2012) Mineral–microbe interactions and implications for remediation. Elements 8(2):95–100.  https://doi.org/10.2113/gselements.8.2.95 CrossRefGoogle Scholar
  7. Fleet ME, Liu X (2009) Calcium L2,3-edge XANES of carbonates, carbonate apatite, and oldhamite (CaS). Am Mineral 94(8-9):1235–1241.  https://doi.org/10.2138/am.2009.3228 CrossRefGoogle Scholar
  8. Giuffre AJ, Hamm LM, Han N, De Yoreo JJ, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci U S A 110(23):9261–9266.  https://doi.org/10.1073/pnas.1222162110 CrossRefGoogle Scholar
  9. Guan WC, Gao KS (2010) Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyi. Chin Sci Bull 55(7):588–593.  https://doi.org/10.1007/s11434-010-0042-5 CrossRefGoogle Scholar
  10. Gussone N, Langer G, Thoms S, Nehrke G, Eisenhauer A, Riebesell U, Wefer G (2006) Cellular calcium pathways and isotope fractionation in Emiliania huxleyi. Geology 34(8):625–628.  https://doi.org/10.1130/G22733.1 CrossRefGoogle Scholar
  11. Langer G, Gussone N, Nehrke G, Riebesell U, Eisenhauer A, Kuhnert H, Rost B, Trimborn S, Thoms S (2006) Coccolith strontium to calcium ratios in Emiliania huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol Oceanogr 51(1):310–320.  https://doi.org/10.4319/lo.2006.51.1.0310 CrossRefGoogle Scholar
  12. Li Q, Csetenyi L, Paton GI, Gadd GM (2015) CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol 17(8):3082–3097.  https://doi.org/10.1111/1462-2920.12954 CrossRefGoogle Scholar
  13. Liu M, Dong F, Zhang W, Nie X, Sun S, Wei H, Luo L, Xiang S, Zhang G (2016) Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: a decrement solution for nuclide and heavy metal disposal. J Hazard Mater 314:295–303.  https://doi.org/10.1016/j.jhazmat.2016.04.049 CrossRefGoogle Scholar
  14. Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C (2010) Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiol J 27(6-7):585–595.  https://doi.org/10.1080/01490451003703014 CrossRefGoogle Scholar
  15. Marsh ME (2003) Regulation of CaCO3 formation in coccolithophores. Comp Biochem Phys B 136(4):743–754.  https://doi.org/10.1016/S1096-4959(03)00180-5 CrossRefGoogle Scholar
  16. Moheimani NR, Webb JP, Borowitzka MA (2012) Bioremediation and other potential applications of coccolithophorid algae: a review. Algal Res 1(2):120–133.  https://doi.org/10.1016/j.algal.2012.06.002 CrossRefGoogle Scholar
  17. Müller M, Antia A, LaRoche J (2008) Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi. Limnol Oceanogr 53(2):506–512.  https://doi.org/10.4319/lo.2008.53.2.0506 CrossRefGoogle Scholar
  18. Nie XQ et al (2017) Uranium binding on Landoltia punctata as a result of formation of insoluble nano-U (VI) and U (IV) phosphate minerals. ACS Sustain Chem Eng 5(2):1494–1502.  https://doi.org/10.1021/acssuschemeng.6b02109 CrossRefGoogle Scholar
  19. Patel M, Aswath PB (2012) Morphology, structure and chemistry of extracted diesel soot: part II: X-ray absorption near edge structure (XANES) spectroscopy and high resolution transmission electron microscopy. Tribol Int 52:17–28.  https://doi.org/10.1016/j.triboint.2012.02.022 CrossRefGoogle Scholar
  20. Povinec PP, Hirose K, Aoyama M (2012) Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact. Environ Sci Technol 46:10356Google Scholar
  21. Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel PMV, Palenik B, Morel FMM (1988) Preparation and chemistry of the artificial algal culture medium Aquil. Biol Oceanogr 6:443–461Google Scholar
  22. Rez P, Blackwell A (2011) Ca L23 spectrum in amorphous and crystalline phases of calcium carbonate. J Phys Chem B 115(38):11193–11198.  https://doi.org/10.1021/jp203057y CrossRefGoogle Scholar
  23. Rickaby R, Schrag D, Zondervan I, Riebesell U (2002) Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Glob Biogeochem Cycles 16:6–1-6-8CrossRefGoogle Scholar
  24. Roden EE, Leonardo MR, Ferris FG (2002) Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction. Geochim Cosmochim Acta 66(16):2823–2839.  https://doi.org/10.1016/S0016-7037(02)00878-5 CrossRefGoogle Scholar
  25. Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, Gonzalez-Muñoz MT, Rodriguez-Gallego M (2007) Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta 71(5):1197–1213.  https://doi.org/10.1016/j.gca.2006.11.031 CrossRefGoogle Scholar
  26. Rodriguez-Navarro C, Jroundi F, Schiro M, Ruiz-Agudo E, González-Muñoz MT (2012) Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. Appl Environ Microbiol 78(11):4017–4029.  https://doi.org/10.1128/AEM.07044-11 CrossRefGoogle Scholar
  27. Shozugawa K, Riebe B, Walther C, Brandl A, Steinhauser G (2016) Fukushima-derived radionuclides in sediments of the Japanese Pacific Ocean coast and various Japanese water samples (seawater, tap water, and coolant water of Fukushima Daiichi reactor unit 5). J Radioanal Nucl Chem 307(3):1787–1793.  https://doi.org/10.1007/s10967-015-4386-9 CrossRefGoogle Scholar
  28. Stevenson EI, Hermoso M, REM R, Tyler JJ, Minoletti F, Parkinson IJ, Mokadem F, Burton KW (2014) Controls on stable strontium isotope fractionation in coccolithophores with implications for the marine Sr cycle. Geochim Cosmochim Acta 128:225–235.  https://doi.org/10.1016/j.gca.2013.11.043 CrossRefGoogle Scholar
  29. Sun S, Yao Y, Zou X, Fan S, Zhou Q, Dai Q, Dong F, Liu M, Nie X, Tan D, Li S (2014) Nano-scale spatial assessment of calcium distribution in Coccolithophores using synchrotron-based nano-CT and STXM-NEXAFS. Int J Mol Sci 15(12):23604–23615.  https://doi.org/10.3390/ijms151223604 CrossRefGoogle Scholar
  30. Tazaki K, Shimojima Y, Takehara T, Nakano M (2015) Formation of microbial mats and salt in radioactive paddy soils in Fukushima, Japan. Fortschr Mineral 5:0529Google Scholar
  31. Wang Y, Yao Q, Zhou G, Fu S (2015) Transformation of amorphous calcium carbonate into monohydrocalcite in aqueous solution: a biomimetic mineralization study. Eur J Mineral 27(6):717–729.  https://doi.org/10.1127/ejm/2015/0027-2486 CrossRefGoogle Scholar
  32. Xing T, Gao KS, Beardall J (2015) Response of growth and photosynthesis of Emiliania huxleyi to visible and UV irradiances under different light regimes. Photochem Photobiol 91(2):343–349.  https://doi.org/10.1111/php.12403 CrossRefGoogle Scholar
  33. Young JR, Henriksen K (2003) Biomineralization within vesicles: the calcite of coccoliths. Rev Mineral Geochem 54(1):189–215.  https://doi.org/10.2113/0540189 CrossRefGoogle Scholar
  34. Yu W, He J, Lin W, Li Y, Men W, Wang F, Huang J (2015) Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the northwest Pacific. J Environ Radioact 142:54–61.  https://doi.org/10.1016/j.jenvrad.2015.01.005 CrossRefGoogle Scholar
  35. Zheng X, Wang X, Shen Y, Lu X, Wang T (2017) Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-crystal formation of chernikovite. Chemosphere 175:161–169.  https://doi.org/10.1016/j.chemosphere.2017.02.035 CrossRefGoogle Scholar
  36. Zou X, Sun S, Lin S, Shen K, Dong F, Tan D, Nie X, Liu M, Wei J (2017) Calcification response of Pleurochrysis carterae to iron concentrations in batch incubations: implication for the marine biogeochemical cycle. Front Earth Sci 11(4):682–688.  https://doi.org/10.1007/s11707-016-0629-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Non-metallic Minerals, Key Laboratory of Solid Waste Treatment and Resource RecycleSouthwest University of Science and TechnologyMianyangChina
  2. 2.Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan ProvinceMianyangChina

Personalised recommendations