Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9547–9555 | Cite as

Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil

  • Fengli Zhang
  • Xiaoxue Zhao
  • Qingbo Li
  • Jia Liu
  • Jizhe Ding
  • Huiying Wu
  • Zongsheng Zhao
  • Yue Ba
  • Xuemin Cheng
  • Liuxin Cui
  • Hongping Li
  • Jingyuan Zhu
Research Article

Abstract

Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1–G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

Keywords

Heavy metal Antibiotic resistance genes Bacterial community Denaturing gradient gel electrophoresis Real-time fluorescence quantitative PCR Agricultural soil 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Youth Foundation of China (No. 81202174).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_1251_MOESM1_ESM.docx (49 kb)
ESM 1 (DOCX 49 kb)

References

  1. Azarbad H, Niklinska M, Laskowski R, van Straalen NM, van Gestel CA, Zhou J, He Z, Wen C, Roling WF (2015) Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol Ecol 91(1):1–11.  https://doi.org/10.1093/femsec/fiu003 CrossRefGoogle Scholar
  2. Azarbad H, Niklinska M, van Gestel CA, van Straalen NM, Roling WF, Laskowski R (2013) Microbial community structure and functioning along metal pollution gradients. Environ Toxicol Chem 32(9):1992–2002.  https://doi.org/10.1002/etc.2269 CrossRefGoogle Scholar
  3. Brandt KK, Frandsen RJN, Holm PE, Nybroe O (2010) Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biol Biochem 42(5):748–757.  https://doi.org/10.1016/j.soilbio.2010.01.008 CrossRefGoogle Scholar
  4. Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67(4):1494–1502.  https://doi.org/10.1128/AEM.67.4.1494-1502.2001 CrossRefGoogle Scholar
  5. Chessa L, Jechalke S, Ding G-C, Pusino A, Mangia NP, Smalla K (2016) The presence of tetracycline in cow manure changes the impact of repeated manure application on soil bacterial communities. Biol Fertil Soils 52(8):1121–1134.  https://doi.org/10.1007/s00374-016-1150-4 CrossRefGoogle Scholar
  6. Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69(6):3223–3230.  https://doi.org/10.1128/AEM.69.6.3223-3230.2003 CrossRefGoogle Scholar
  7. Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature 509(7502):612–616.  https://doi.org/10.1038/nature13377 CrossRefGoogle Scholar
  8. Gao P, Munir M, Xagoraraki I (2012) Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Total Environ 421-422:173–183.  https://doi.org/10.1016/j.scitotenv.2012.01.061 CrossRefGoogle Scholar
  9. Gillan DC, Danis B, Pernet P, Joly G, Dubois P (2005) Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol 71(2):679–690.  https://doi.org/10.1128/AEM.71.2.679-690.2005 CrossRefGoogle Scholar
  10. Grandlic CJ, Geib I, Pilon R, Sandrin TR (2006) Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): effects on abundance and community structure of indigenous sediment bacteria. Environ Pollut 144(1):119–126.  https://doi.org/10.1016/j.envpol.2005.12.029 CrossRefGoogle Scholar
  11. Han XM, Hu HW, Shi XZ, Wang JT, Han LL, Chen D, He JZ (2016) Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. Environ Pollut 211:48–57.  https://doi.org/10.1016/j.envpol.2015.12.033 CrossRefGoogle Scholar
  12. He LY, Liu YS, Su HC, Zhao JL, Liu SS, Chen J, Liu WR, Ying GG (2014) Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables. Environ Sci Technol 48(22):13120–13129.  https://doi.org/10.1021/es5041267 CrossRefGoogle Scholar
  13. Huerta B, Marti E, Gros M, López P, Pompêo M, Armengol J, Barceló D, Balcázar JL, Rodríguez-Mozaz S, Marcé R (2013) Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ 456-457:161–170.  https://doi.org/10.1016/j.scitotenv.2013.03.071 CrossRefGoogle Scholar
  14. Ji X, Shen Q, Liu F, Ma J, Xu G, Wang Y, Wu M (2012) Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater 235-236:178–185.  https://doi.org/10.1016/j.jhazmat.2012.07.040 CrossRefGoogle Scholar
  15. Knapp CW, Callan AC, Aitken B, Shearn R, Koenders A, Hinwood A (2017) Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environ Sci Pollut Res 24(3):2484–2494.  https://doi.org/10.1007/s11356-016-7997-y CrossRefGoogle Scholar
  16. Knapp CW, McCluskey SM, Singh BK, Campbell CD, Hudson G, Graham DW (2011) Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One 6(11):e27300.  https://doi.org/10.1371/journal.pone.0027300 CrossRefGoogle Scholar
  17. Laffite A, Kilunga PI, Kayembe JM, Devarajan N, Mulaji CK, Giuliani G, Slavekova VI, Poté J (2016) Hospital effluents are one of several sources of metal, antibiotic resistance genes, and bacterial markers disseminated in Sub-Saharan urban rivers. Front Microbiol 7:1128CrossRefGoogle Scholar
  18. Laht M, Karkman A, Voolaid V, Ritz C, Tenson T, Virta M, Kisand V (2014) Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. PLoS One 9(8):e103705.  https://doi.org/10.1371/journal.pone.0103705 CrossRefGoogle Scholar
  19. Lu Z, Na G, Gao H, Wang L, Bao C, Yao Z (2015) Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities. Sci Total Environ 527-528:429–438.  https://doi.org/10.1016/j.scitotenv.2015.04.101 CrossRefGoogle Scholar
  20. Macdonald CA, Yang XY, Clark IM, Zhao FJ, Hirsch PR, McGrath SP (2010) Relative impact of soil, metal source and metal concentration on bacterial community structure and community tolerance. Soil Biol Biochem 42(9):1408–1417.  https://doi.org/10.1016/j.soilbio.2010.05.002 CrossRefGoogle Scholar
  21. Margesin R, Plaza GA, Kasenbacher S (2011) Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere 82(11):1583–1588.  https://doi.org/10.1016/j.chemosphere.2010.11.056 CrossRefGoogle Scholar
  22. McKinney CW, Loftin KA, Meyer MT, Davis JG, Pruden A (2010) Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44(16):6102–6109.  https://doi.org/10.1021/es9038165 CrossRefGoogle Scholar
  23. Nahmani J, Lavelle P (2002) Effects of heavy metal pollution on soil macrofauna in a grassland of northern France. Eur J Soil Biol 38(3-4):297–300.  https://doi.org/10.1016/S1164-5563(02)01169-X CrossRefGoogle Scholar
  24. Pehrsson EC, Tsukayama P, Patel S, Mejia-Bautista M, Sosa-Soto G, Navarrete KM, Calderon M, Cabrera L, Hoyos-Arango W, Bertoli MT, Berg DE, Gilman RH, Dantas G (2016) Interconnected microbiomes and resistomes in low-income human habitats. Nature 533(7602):212–216.  https://doi.org/10.1038/nature17672 CrossRefGoogle Scholar
  25. Peng S, Zhou B, Wang Y, Lin X, Wang H, Qiu C (2016) Bacteria play a more important role than nutrients in the accumulation of tetracycline resistance in manure-treated. Soil Biol Fertility Soils 52(5):655–663.  https://doi.org/10.1007/s00374-016-1105-9 CrossRefGoogle Scholar
  26. Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40(23):7445–7450.  https://doi.org/10.1021/es060413l CrossRefGoogle Scholar
  27. Rosamond J, Allsop A (2000) Harnessing the power of the genome in the search for new antibiotics. Science 287(5460):1973–1976.  https://doi.org/10.1126/science.287.5460.1973 CrossRefGoogle Scholar
  28. Santorufo L, Van Gestel CA, Rocco A, Maisto G (2012) Soil invertebrates as bioindicators of urban soil quality. Environ Pollut 161:57–63.  https://doi.org/10.1016/j.envpol.2011.09.042 CrossRefGoogle Scholar
  29. Sitte J, Loffler S, Burkhardt EM, Goldfarb KC, Buchel G, Hazen TC, Kusel K (2015) Metals other than uranium affected microbial community composition in a historical uranium-mining site. Environ Sci Pollut Res 22(24):19326–19341.  https://doi.org/10.1007/s11356-015-4791-1 CrossRefGoogle Scholar
  30. Su Y, Wang J, Huang Z, Xie B (2017) On-site removal of antibiotics and antibiotic resistance genes from leachate by aged refuse bioreactor: effects of microbial community and operational parameters. Chemosphere 178:486–495.  https://doi.org/10.1016/j.chemosphere.2017.03.063 CrossRefGoogle Scholar
  31. Wang FH, Qiao M, Chen Z, Su JQ, Zhu YG (2015) Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J Hazard Mater 299:215–221.  https://doi.org/10.1016/j.jhazmat.2015.05.028 CrossRefGoogle Scholar
  32. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5(3):175–186.  https://doi.org/10.1038/nrmicro1614 CrossRefGoogle Scholar
  33. Wu D, Huang Z, Yang K, Graham D, Xie B (2015) Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ Sci Technol 49(7):4122–4128.  https://doi.org/10.1021/es506081z CrossRefGoogle Scholar
  34. Wu N, Qiao M, Zhang B, Cheng WD, Zhu YG (2010) Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ. Sci. Technol 44(18):6933–6939.  https://doi.org/10.1021/es1007802 CrossRefGoogle Scholar
  35. Wu Y, Yu CP, Yue M, Liu SP, Yang XY (2016) Occurrence of selected PPCPs and sulfonamide resistance genes associated with heavy metals pollution in surface sediments from Chao Lake, China. Environ Earth Sci 75(1):43.  https://doi.org/10.1007/s12665-015-4838-0 CrossRefGoogle Scholar
  36. Xu YB, Hou MY, Li YF, Huang L, Ruan JJ, Zheng L, Qiao QX, Du QP (2017) Distribution of tetracycline resistance genes and AmpC beta-lactamase genes in representative non-urban sewage plants and correlations with treatment processes and heavy metals. Chemosphere 170:274–281.  https://doi.org/10.1016/j.chemosphere.2016.12.027 CrossRefGoogle Scholar
  37. Zhang C, Nie S, Liang J, Zeng G, Wu H, Hua S, Liu J, Yuan Y, Xiao H, Deng L, Xiang H (2016a) Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci Total Environ 557-558:785–790.  https://doi.org/10.1016/j.scitotenv.2016.01.170 CrossRefGoogle Scholar
  38. Zhang T, Zhang M, Zhang XX, Fang HH (2009a) Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants. Environ Sci Technol 43(10):3455–3460.  https://doi.org/10.1021/es803309m CrossRefGoogle Scholar
  39. Zhang X, Wu B, Zhang Y, Zhang T, Yang L, Fang HH, Ford T, Cheng S (2009b) Class 1 integronase gene and tetracycline resistance genes tetA and tetC in different water environments of Jiangsu Province, China. Ecotoxicology 18(6):652–660.  https://doi.org/10.1007/s10646-009-0332-3 CrossRefGoogle Scholar
  40. Zhang XH, Xu YB, He XL, Huang L, Ling JY, Zheng L, Du QP (2016b) Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environ Pollut 218:1255–1261.  https://doi.org/10.1016/j.envpol.2016.08.081 CrossRefGoogle Scholar
  41. Zhang XX, Zhang T (2011) Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. Environ Sci Technol 45(7):2598–2604.  https://doi.org/10.1021/es103672x CrossRefGoogle Scholar
  42. Zhang YY, Geng JJ, Ma H, Ren HQ, Xu K, Ding LL (2016c) Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure. Sci Total Environ 571:479–486.  https://doi.org/10.1016/j.scitotenv.2016.07.014 CrossRefGoogle Scholar
  43. Zhao S, White DG, Ge B, Ayers S, Friedman S, English L, Wagner D, Gaines S, Meng J (2001) Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol 67(4):1558–1564.  https://doi.org/10.1128/AEM.67.4.1558-1564.2001 CrossRefGoogle Scholar
  44. Zhou B, Wang C, Zhao Q, Wang Y, Huo MJ, Wang JD, Wang SL (2016) Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. J Hazard Mater 320:10–17.  https://doi.org/10.1016/j.jhazmat.2016.08.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fengli Zhang
    • 1
  • Xiaoxue Zhao
    • 2
  • Qingbo Li
    • 1
  • Jia Liu
    • 3
  • Jizhe Ding
    • 1
  • Huiying Wu
    • 1
  • Zongsheng Zhao
    • 2
  • Yue Ba
    • 1
  • Xuemin Cheng
    • 1
  • Liuxin Cui
    • 1
  • Hongping Li
    • 1
  • Jingyuan Zhu
    • 1
  1. 1.College of Public HealthZhengzhou UniversityZhengzhouChina
  2. 2.Jiyuan City Key Laboratory of Heavy-Metal Monitoring and Pollution ControlJiyuanChina
  3. 3.Department of LeukemiaHenan Cancer HospitalZhengzhouChina

Personalised recommendations