Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 35, pp 34950–34967 | Cite as

Iron-impregnated zeolite catalyst for efficient removal of micropollutants at very low concentration from Meurthe river

  • Hawraa Ayoub
  • Thibault Roques-Carmes
  • Olivier Potier
  • Bachar Koubaissy
  • Steve Pontvianne
  • Audrey Lenouvel
  • Cédric Guignard
  • Emmanuel Mousset
  • Hélène Poirot
  • Joumana Toufaily
  • Tayssir Hamieh
Advanced oxidation processes for water/wastewater treatment

Abstract

In this paper, for the first time, faujasite Y zeolite impregnated with iron (III) was employed as a catalyst to remove a real cocktail of micropollutants inside real water samples from the Meurthe river by the means of the heterogeneous photo-Fenton process. The catalyst was prepared by the wet impregnation method using iron (III) nitrate nonahydrate as iron precursor. First, an optimization of the process parameters was conducted using phenol as model macro-pollutant. The hydrogen peroxide concentration, the light wavelength (UV and visible) and intensity, the iron loading immobilized, as well as the pH of the solution were investigated. Complete photo-Fenton degradation of the contaminant was achieved using faujasite containing 20 wt.% of iron, under UV light, and in the presence of 0.007 mol/L of H2O2 at pH 5.5. In a second step, the optimized process was used with real water samples from the Meurthe river. Twenty-one micropollutants (endocrine disruptors, pharmaceuticals, personal care products, and perfluorinated compounds) including 17 pharmaceutical compounds were specifically targeted, detected, and quantified. All the initial concentrations remained in the range of nanogram per liter (0.8–88 ng/L). The majority of the micropollutants had a large affinity for the surface of the iron-impregnated faujasite. Our results emphasized the very good efficiency of the photo-Fenton process with a cocktail of a minimum of 21 micropollutants. Except for sulfamethoxazole and PFOA, the concentrations of all the other microcontaminants (bisphenol A, carbamazepine, carbamazepine-10,11-epoxide, clarithromycin, diclofenac, estrone, ibuprofen, ketoprofen, lidocaine, naproxen, PFOS, triclosan, etc.) became lower than the limit of quantification of the LC-MS/MS after 30 min or 6 h of photo-Fenton treatment depending on their initial concentrations. The photo-Fenton degradation of PFOA can be neglected. The photo-Fenton degradation of sulfamethoxazole obeys first-order kinetics in the presence of the cocktail of the other micropollutants.

Keywords

Photo-Fenton Wastewater treatment Micropollutants Pharmaceuticals Iron-impregnated faujasite Phenol Emerging contaminants 

Supplementary material

11356_2018_1214_MOESM1_ESM.docx (2.7 mb)
ESM 1 (DOCX 2778 kb)

References

  1. Andrade AL, Souza DM, Pereira MC, Fabris JD, Domingues RZ (2009) Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach. Cerâmica 55(336):420–424.  https://doi.org/10.1590/S0366-69132009000400013 CrossRefGoogle Scholar
  2. Arimi M (2017) Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Progress Nat Sci: Mater Int 27(2):275–282.  https://doi.org/10.1016/j.pnsc.2017.02.001 CrossRefGoogle Scholar
  3. Arvaniti O, Stasinakis A (2015) Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci Total Environ 524-525:81–92.  https://doi.org/10.1016/j.scitotenv.2015.04.023 CrossRefGoogle Scholar
  4. Barakat MA, Tseng JM, Huang CP (2005) Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds. Appl Catal B 59(1):99–104CrossRefGoogle Scholar
  5. Barreca S, Velez Colmenares J, Pace A, Orecchio S, Pulgarin C (2014) Neutral solar photo-Fenton degradation of 4-nitrophenol on iron-enriched hybrid montmorillonite-alginate beads (Fe-MABs). J Photochem Photobiol A 282:33–40.  https://doi.org/10.1016/j.jphotochem.2014.02.008 CrossRefGoogle Scholar
  6. Barreca S, Velez Colmenares J, Pace A, Orecchio S, Pulgarin C (2015) Escherichia coli inactivation by neutral solar heterogeneous photo-Fenton (HPF) over hybrid iron/montmorillonite/alginate beads. J Env Chem Eng 3(1):317–324CrossRefGoogle Scholar
  7. Basumatary KA, Pratim Adhikari P, Ghoshal AK, Pugazhenthi G (2016) Fabrication and performance evaluation of faujasite zeolite composite ultrafiltration membrane by separation of trivalent ions from aqueous solution. Environ Prog Sustain Energy 35(4):1047–1054.  https://doi.org/10.1002/ep.12325 CrossRefGoogle Scholar
  8. Blanco M, Martinez A, Marcaide A, Aranzabe E, Aranzabe A (2014) Heterogeneous Fenton catalyst for the efficient removal of azo dyes in water. Am J Analyt Chem 5(08):490–499.  https://doi.org/10.4236/ajac.2014.58058 CrossRefGoogle Scholar
  9. Cejka J, Zilkova N, Nachtigall P (2005) Molecular sieves: from basic research to industrial applications. In: Proceedings of the 3rd international zeolite symposium (3rd FEZA) Prague, Czech RepublicGoogle Scholar
  10. de Witte B, van Langenhove H, Demeestere K, Dewulf J (2011) Advanced oxidation of pharmaceuticals: chemical analysis and biological assessment of degradation products. Crit Rev Environ Sci Technol 41(3):215–242.  https://doi.org/10.1080/10643380902728698 CrossRefGoogle Scholar
  11. Erdemoğlu M, Sarıkaya M (2006) Effects of heavy metals and oxalate on the zeta potential of magnetite. J Colloid Interface Sci 300(2):795–804.  https://doi.org/10.1016/j.jcis.2006.04.004 CrossRefGoogle Scholar
  12. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399(1):251–275.  https://doi.org/10.1007/s00216-010-4300-9 CrossRefGoogle Scholar
  13. Feng J, Hu X, Yue PL, Zhu HY, GQ L (2003) Discoloration and mineralization of reactive red HE-3B by heterogeneous photo-Fenton reaction. Water Res 37(15):3776–3784.  https://doi.org/10.1016/S0043-1354(03)00268-9 CrossRefGoogle Scholar
  14. Ghaly MY, Härtel G, Mayer R, Haseneder R (2001) Photochemical oxidation of P-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Manag 21(1):41–47.  https://doi.org/10.1016/S0956-053X(00)00070-2 CrossRefGoogle Scholar
  15. Ghatak HR (2014) Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater. Crit Rev Environ Sci Technol 44(11):1167–1219.  https://doi.org/10.1080/10643389.2013.763581 CrossRefGoogle Scholar
  16. Hartmann M, Kullmann S, Keller H (2010) Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J Mat Chem 20(41):9002–9017.  https://doi.org/10.1039/c0jm00577k CrossRefGoogle Scholar
  17. Huang W, Luo M, Wei C, Wang Y, Hanna K, Mailhot G (2017) Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation. Environ Sci Pollut R 24(11):10421–10429.  https://doi.org/10.1007/s11356-017-8728-8 CrossRefGoogle Scholar
  18. Igos E, Benetto E, Venditti S, Kohler C, Cornelissen A, Moeller R, Biwer A (2012) Is it better to remove pharmaceuticals in decentralized or conventional wastewater treatment plants? A life cycle assessment comparison. Sci Total Environ 438:533–540.  https://doi.org/10.1016/j.scitotenv.2012.08.096 CrossRefGoogle Scholar
  19. Jiang C, Xu Z, Guo Q, Zhuo Q (2014) Degradation of bisphenol A in water by the heterogeneous photo-Fenton. Environ Technol 5(8):966–972CrossRefGoogle Scholar
  20. Kasiri MB, Aleboyeh H, Aleboyeh A (2008) Degradation of acid blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Appl Catal B 84(1):9–15.  https://doi.org/10.1016/j.apcatb.2008.02.024 CrossRefGoogle Scholar
  21. Kim S, Durand P, Roques-Carmes T, Eastoe J, Pasc A (2015) Metallo-solid lipid nanoparticles as colloidal tools for meso-macroporous supported catalysts. Langmuir 31(5):1842–1849.  https://doi.org/10.1021/la504708k CrossRefGoogle Scholar
  22. Klamerth N, Malato S, Agüera A, Fernández-Alba A, Mailhot G (2012) Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection. Environ Sci Technol 46(5):2885–2892.  https://doi.org/10.1021/es204112d CrossRefGoogle Scholar
  23. Kovalova L, Knappe DRU, Lehnberg K, Kazner C, Hollender J (2013) Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ Sci Pollut Res 20(6):3607–3615.  https://doi.org/10.1007/s11356-012-1432-9 CrossRefGoogle Scholar
  24. Kowalska-Kuś J, Held A, Nowińska K (2013) Oxydehydrogenation of C2–C4 hydrocarbons over Fe-ZSM-5 zeolites with N2O as an oxidant. Catal Sci Tech 3(2):508–518.  https://doi.org/10.1039/C2CY20536J CrossRefGoogle Scholar
  25. Kuzniatsova T, Kim Y, Shqau K, Dutta PK, Verweij H (2007) Zeta potential measurements of zeolite Y: application in homogeneous deposition of particle coatings. Microporous Mesoporous Mater 103(1):102–107.  https://doi.org/10.1016/j.micromeso.2007.01.042 CrossRefGoogle Scholar
  26. Lam M, Mabury S (2005) Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat Sci 67(2):177–188.  https://doi.org/10.1007/s00027-004-0768-8 CrossRefGoogle Scholar
  27. Li Y, Lu Y, Zhu X (2006) Photo-Fenton discoloration of the azo dye X-3B over pillared bentonites containing iron. J Hazard Mater 132(2):196–201.  https://doi.org/10.1016/j.jhazmat.2005.07.090 CrossRefGoogle Scholar
  28. Li L, Shen Q, Li J, Hao Z, Ping Xu Z, Max Lu GQ (2008) Iron-exchanged FAU zeolites: preparation, characterization and catalytic properties for N2O decomposition. Appl Catal A: General 344(1):131–141.  https://doi.org/10.1016/j.apcata.2008.04.011 CrossRefGoogle Scholar
  29. Loaiza-Ambuludi S, Panizza M, Oturan N, Oturan MA (2014) Removal of the anti-inflammatory drug ibuprofen from water using homogeneous photocatalysis. Catal Today 224:29–33.  https://doi.org/10.1016/j.cattod.2013.12.018 CrossRefGoogle Scholar
  30. Lutz W (2014) Zeolite Y: synthesis, modification, and properties—a case revisited. Adv Mater Sci Eng ID 724248Google Scholar
  31. Mariangela G, Rizzo L, Farina A (2013) Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ Sci Pollut Res 20(6):3616–3628CrossRefGoogle Scholar
  32. Miralles-Cuevas S, Oller I, Ruiz Aguirre A, Sánchez Pérez JA, Malato Rodríguez S (2014) Removal of pharmaceuticals at microg L−1 by combined nanofiltration and mild solar photo-Fenton. Chem Eng J 239:68–74.  https://doi.org/10.1016/j.cej.2013.10.047 CrossRefGoogle Scholar
  33. Natali Sora I, Fumagalli D (2017) Fast photocatalytic degradation of pharmaceutical micropollutants and ecotoxicological effects. Environ Sci Pollut R 24(14):12556–12561.  https://doi.org/10.1007/s11356-016-7640-y CrossRefGoogle Scholar
  34. Neamu M, Catrinescu C, Kettrup A (2004a) Effect of dealumination of iron(III)-exchanged Y zeolites on oxidation of reactive yellow 84 azo dye in the presence of hydrogen peroxide. Appl Catal B 51(3):149–157.  https://doi.org/10.1016/j.apcatb.2004.01.020 CrossRefGoogle Scholar
  35. Neamu M, Zaharia C, Catrinescu C, Yediler A, Macoveanu M, Kettrup A (2004b) Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL. Appl Catal B 48(4):287–294.  https://doi.org/10.1016/j.apcatb.2003.11.005 CrossRefGoogle Scholar
  36. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5(51):40552–40577.  https://doi.org/10.1039/C5RA02023A CrossRefGoogle Scholar
  37. Noorjahan M, Durga Kumari V, Subrahmanyam M, Panda L (2005) Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Appl Catal B 57(4):291–298.  https://doi.org/10.1016/j.apcatb.2004.11.006 CrossRefGoogle Scholar
  38. Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641.  https://doi.org/10.1080/10643389.2013.829765 CrossRefGoogle Scholar
  39. Richardson SD, Kimura SY (2016) Water analysis: emerging contaminants and current issues. Anal Chem 88(1):546–582.  https://doi.org/10.1021/acs.analchem.5b04493 CrossRefGoogle Scholar
  40. Rodriguez S, Aurora S, Arturo R (2011) Effectiveness of AOP’s on abatement of emerging pollutants and their oxidation intermediates: nicotine removal with Fenton’s reagent. Desalination 280(1):108–113.  https://doi.org/10.1016/j.desal.2011.06.055 CrossRefGoogle Scholar
  41. Rutkowska M, Chmielarz L, Jabłońska M, Van Oers CJ, Cool P (2014) Iron exchanged ZSM-5 and Y zeolites calcined at different temperatures: activity in N2O decomposition. J Porous Mater 21(1):91–98.  https://doi.org/10.1007/s10934-013-9751-x CrossRefGoogle Scholar
  42. Sanches S, Rodrigues A, Cardoso V, Benoliel M, Crespo G, Pereira V (2016) Comparison of UV photolysis, nanofiltration, and their combination to remove hormones from a drinking water source and reduce endocrine disrupting activity. Environ Sci Pollut R 23(11):11279–11288.  https://doi.org/10.1007/s11356-016-6325-x CrossRefGoogle Scholar
  43. Trapido M, Epold I, Bolobajev J, Dulova N (2014) Emerging micropollutants in water/wastewater: growing demand on removal technologies. Environ Sci Pollut Res 21(21):12217–12222.  https://doi.org/10.1007/s11356-014-3020-7 CrossRefGoogle Scholar
  44. Treacy MMJ, Higgins JB (2007) FAU—faujasite. In: Collection of simulated XRD powder patterns for zeolites, Fifth edn. Elsevier Science B.V, Amsterdam, pp 166–167.  https://doi.org/10.1016/B978-044453067-7/50548-7 CrossRefGoogle Scholar
  45. Turapan S, Kongkachuichay P, Worathanakul P (2012) Synthesis and characterization of Fe/SUZ-4 zeolite. Procedia Eng 32:191–197.  https://doi.org/10.1016/j.proeng.2012.01.1256 CrossRefGoogle Scholar
  46. Verboekend DN, Nuttens R, Locus J, Van Aelst P, Verolme JC, Groen J, Pérez-Ramírez SBF (2016) Synthesis, characterization, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. Chem Rev 45(12):3331–3352.  https://doi.org/10.1039/C5CS00520E CrossRefGoogle Scholar
  47. Xavier S, Gandhimathi R, Nidheesh PV, Ramesh ST (2016) Comparative removal of magenta MB from aqueous solution by homogeneous and heterogeneous photo-Fenton processes. Desalin Water Treat 57(27):12832–12841.  https://doi.org/10.1080/19443994.2015.1054887 CrossRefGoogle Scholar
  48. Yue Y, Liu H, Yuan P, Yu C, Bao X (2015) One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Sci Rep 5(1):09270.  https://doi.org/10.1038/srep09270 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hawraa Ayoub
    • 1
    • 2
  • Thibault Roques-Carmes
    • 1
  • Olivier Potier
    • 1
  • Bachar Koubaissy
    • 2
  • Steve Pontvianne
    • 1
  • Audrey Lenouvel
    • 3
  • Cédric Guignard
    • 3
  • Emmanuel Mousset
    • 1
  • Hélène Poirot
    • 1
  • Joumana Toufaily
    • 2
  • Tayssir Hamieh
    • 2
  1. 1.Laboratoire Réactions et Génie des Procédés (LRGP), UMR CNRS 7274Université de LorraineNancyFrance
  2. 2.Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences ILebanese UniversityBeirutLebanon
  3. 3.Luxembourg Institute of Science and Technology (LIST)BelvauxLuxembourg

Personalised recommendations