Environmental Science and Pollution Research

, Volume 24, Issue 29, pp 23015–23025 | Cite as

Evaluation of methods to determine adsorption of polycyclic aromatic hydrocarbons to dispersed carbon nanotubes

  • Berit Glomstad
  • Lisbet Sørensen
  • Jingfu Liu
  • Mohai Shen
  • Florian Zindler
  • Bjørn M. Jenssen
  • Andy M. Booth
Research Article
  • 214 Downloads

Abstract

A number of methods have been reported for determining hydrophobic organic compound adsorption to dispersed carbon nanotubes (CNTs), but their accuracy and reliability remain uncertain. We have evaluated three methods to investigate the adsorption of phenanthrene (a model polycyclic aromatic hydrocarbon, PAH) to CNTs with different physicochemical properties: dialysis tube (DT) protected negligible depletion solid phase microextraction (DT-nd-SPME), ultracentrifugation, and filtration using various types of filters. Dispersed CNTs adhered to the unprotected polydimethylsiloxane (PDMS)-coated fibers used in nd-SPME. Protection of the fibers from CNT adherence was investigated with hydrophilic DT, but high PAH sorption to the DT was observed. The efficiency of ultracentrifugation and filtration to separate CNTs from the water phase depended on CNT physicochemical properties. While non-functionalized CNTs were efficiently separated from the water phase using ultracentrifugation, incomplete separation of carboxyl functionalized CNTs was observed. Filtration efficiency varied with different filter types (composition and pore size), and non-functionalized CNTs were more easily separated from the water phase than functionalized CNTs. Sorption of phenanthrene was high (< 70%) for three of the filters tested, making them unsuitable for the assessment of phenanthrene adsorption to CNTs. Filtration using a hydrophilic polytetrafluoroethylene (PTFE) filter membrane (0.1 μm) was found to be a simple and precise technique for the determination of phenanthrene adsorption to a range of CNTs, efficiently separating all types of CNTs and exhibiting a good and highly reproducible recovery of phenanthrene (82%) over the concentration range tested (70–735 μg/L).

Keywords

Carbon nanotubes Adsorption Negligible depletion solid phase microextraction Filtration Polycyclic aromatic hydrocarbons Nanomaterials 

Notes

Acknowledgements

The work reported here has been undertaken as part of the Research Council of Norway (RCN) funded project “NanoSorb” (Grant Agreement number 209685/E50). The authors wish to thank the RCN for their financial support. We also wish to thank the External Cooperation Program of Chinese Academy of Sciences (Grant number GJHZ1206) for financial support. The research leading to these results has been partially funded by the European Union Seventh Framework Programme (FP7/2007-2013) project NANoREG (grant agreement 310584) and the RCN project NorNANoREG (grant agreement 239199). The authors acknowledge the essential technical assistance of Kristin Bonaunet, Trond Størseth, Lisbet Støen, Inger B. Steinsvik, Marianne U. Rønsberg, Kjersti Almås, Anne Rein Hatletveit, Calin D. Marioara, John Walmsley, and Aud Spjelkavik (SINTEF Materials and Chemistry).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11356_2017_9953_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2184 kb)

References

  1. Alloy MM, Roberts AP (2011) Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction. Ecotoxicol Environ Saf 74:1839–1843. doi: 10.1016/j.ecoenv.2011.06.020 CrossRefGoogle Scholar
  2. Apul OG, Shao T, Zhang S, Karanfil T (2012) Impact of carbon nanotube morphology on phenanthrene adsorption. Environ Toxicol Chem 31:73–78. doi: 10.1002/etc.705 CrossRefGoogle Scholar
  3. Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C-60. Aquat Toxicol 86:379–387CrossRefGoogle Scholar
  4. Carabineiro SAC, Thavorn-Amornsri T, Pereira MFR, Figueiredo JL (2011) Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research 45:4583–4591. doi: 10.1016/j.watres.2011.06.008 CrossRefGoogle Scholar
  5. Carabineiro SAC, Thavorn-amornsri T, Pereira MFR, Serp P, Figueiredo JL (2012) Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal Today 186:29–34. doi: 10.1016/j.Cattod.2011.08.020 CrossRefGoogle Scholar
  6. Cerrillo C, Barandika G, Igartua A, Areitioaurtena O, Marcaide A, Mendoza G (2015) Ecotoxicity of multiwalled carbon nanotubes: standardization of the dispersion methods and concentration measurements. Environ Toxicol Chem 34:1854–1862. doi: 10.1002/etc.2999 CrossRefGoogle Scholar
  7. Chen W, Duan L, Zhu DQ (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41:8295–8300CrossRefGoogle Scholar
  8. Cho H-H, Smith BA, Wnuk JD, Fairbrother DH, Ball WP (2008) Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environ Sci Technol 42:2899–2905. doi: 10.1021/es702363e CrossRefGoogle Scholar
  9. Cho H, Huang H, Schwab K (2011) Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27:12960–12967CrossRefGoogle Scholar
  10. Dai X, Zou L, Yan Z, Millikan M (2009) Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons. J Hazard Mater 168:51–56. doi: 10.1016/j.jhazmat.2009.01.119 CrossRefGoogle Scholar
  11. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539. doi: 10.1126/science.1222453 CrossRefGoogle Scholar
  12. Edgington AJ et al (2010) The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. Environ Toxicol Chem 29:2511–2518. doi: 10.1002/etc.309 CrossRefGoogle Scholar
  13. Glomstad B, Altin D, Sørensen L, Liu J, Jenssen BM, Booth AM (2016) Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environ Sci Technol 50:2660–2668. doi: 10.1021/acs.est.5b05177 CrossRefGoogle Scholar
  14. Hennrich F et al (2007) The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J Phys Chem B 111:1932–1937. doi: 10.1021/jp065262n CrossRefGoogle Scholar
  15. Heringa MB, JLM H (2003) Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). TracTrends Anal Chem 22:575–587. doi: 10.1016/s0165-9936(03)01006-9 CrossRefGoogle Scholar
  16. Hu XL, Liu JF, Mayer P, Jiang G (2008) Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Environ Toxicol Chem 27:1868–1874CrossRefGoogle Scholar
  17. Hu XL et al (2010) Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. Chemosphere 80:693–700CrossRefGoogle Scholar
  18. Huffer T, Schroth S, Schmidt TC (2015) Influence of humic acids on sorption of alkanes by carbon nanotubes—implications for the dominant sorption mode. Chemosphere 119:1169–1175. doi: 10.1016/j.chemosphere.2014.09.097 CrossRefGoogle Scholar
  19. Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184. doi: 10.1021/es061817g CrossRefGoogle Scholar
  20. Kah M, Zhang X, MTO J, Hofmann T (2011) Measuring and modelling adsorption of PAHs to carbon nanotubes over a six order of magnitude wide concentration range. Environ Sci Technol 45:6011–6017. doi: 10.1021/es2007726 CrossRefGoogle Scholar
  21. Kah M, Zhang XR, Hofmann T (2014) Sorption behavior of carbon nanotubes: changes induced by functionalization, sonication and natural organic. Sci Total Environ 497:133–138. doi: 10.1016/j.scitotenv.2014.07.112 CrossRefGoogle Scholar
  22. Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, Weiss CA (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27:1932–1941. doi: 10.1897/07-624.1 CrossRefGoogle Scholar
  23. Kesharwani P, Mishra V, Jain NK (2015) Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discov Today 20:1049–1060. doi: 10.1016/j.drudis.2015.05.004 CrossRefGoogle Scholar
  24. Li ZF, Luo GH, Zhou WP, Wei F, Xiang R, Liu YP (2006) The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry. Nanotechnology 17:3692CrossRefGoogle Scholar
  25. Linard EN, van den Hurk P, Karanfil T, Apul OG, Klaine SJ (2015) Influence of carbon nanotubes on the bioavailability of fluoranthene. Environ Toxicol Chem 34:658–666. doi: 10.1002/etc.2853 CrossRefGoogle Scholar
  26. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859. doi: 10.1021/es8006904 CrossRefGoogle Scholar
  27. OECD (2011) Test no. 201: freshwater alga and cyanobacteria, growth inhibition test. OECD Publishing, Paris. doi: 10.1787/9789264069923-en Google Scholar
  28. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013. doi: 10.1021/es801777n CrossRefGoogle Scholar
  29. Petersen E, Henry T (2012) Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review. Environ Toxicol Chem 31:60–72CrossRefGoogle Scholar
  30. Petersen EJ et al (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–9856. doi: 10.1021/es201579y CrossRefGoogle Scholar
  31. Petersen EJ et al (2016) Quantification of carbon nanotubes in environmental matrices: current capabilities, case studies, and future prospects. Environ Sci Technol 50:4587–4605. doi: 10.1021/acs.est.5b05647 CrossRefGoogle Scholar
  32. Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–6144. doi: 10.1021/es200506b CrossRefGoogle Scholar
  33. Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47:7012–7019. doi: 10.1021/es304016u Google Scholar
  34. Schwab F, Camenzuli L, Knauer K, Nowack B, Magrez A, Sigg L, Bucheli TD (2014) Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae. Environ Pollut 192:147–153. doi: 10.1016/j.envpol.2014.05.018 CrossRefGoogle Scholar
  35. Schwyzer I, Kaegi R, Sigg L, Smajda R, Magrez A, Nowack B (2012) Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium. Environ Pollut 169:64–73. doi: 10.1016/j.envpol.2012.05.004 CrossRefGoogle Scholar
  36. Shen MH, Xia XH, Wang F, Zhang P, Zhao XL (2012) Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment. Environ Toxicol Chem 31:202–209. doi: 10.1002/etc.722 CrossRefGoogle Scholar
  37. Shen M, Xia X, Zhai Y, Zhang X, Zhao X, Zhang P (2014) Influence of carbon nanotubes with preloaded and coexisting dissolved organic matter on the bioaccumulation of polycyclic aromatic hydrocarbons to Chironomus plumosus larvae in sediment. Environ Toxicol Chem 33:182–189. doi: 10.1002/etc.2414 CrossRefGoogle Scholar
  38. Smith B, Yang J, Bitter JL, Ball WP, Fairbrother DH (2012) Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter. Environ Sci Technol 46:12839–12847. doi: 10.1021/es303157r CrossRefGoogle Scholar
  39. Stegen J (2014) Mechanics of carbon nanotube scission under sonication. J Chem Phys 140. doi: 10.1063/1.4884823
  40. Su Y, Yan XM, Pu YB, Xiao F, Wang DS, Yang M (2013) Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese medaka (Oryzias latipes). Environ Sc Technol 47:4704–4710. doi: 10.1021/es304479w CrossRefGoogle Scholar
  41. Thurman EM (1985) Amount of organic carbon in natural waters. In: Organic geochemistry of natural waters. Springer Netherlands, Dordrecht, pp 7–65. doi: 10.1007/978-94-009-5095-5_2 CrossRefGoogle Scholar
  42. U.S. Environmental Protection Agency (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA-821-R-02-012, 5th edn., Washington, DCGoogle Scholar
  43. Wang X, Tao S, Xing B (2009) Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environ Sci Technol 43:6214–6219. doi: 10.1021/es901062t CrossRefGoogle Scholar
  44. Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008. doi: 10.1021/cr100059s CrossRefGoogle Scholar
  45. Yang K, Wang X, Zhu L, Xing B (2006a) Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ Sci Technol 40:5804–5810. doi: 10.1021/es061081 CrossRefGoogle Scholar
  46. Yang K, Zhu LZ, Xing BS (2006b) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Envi Sci Technol 40:1855–1861CrossRefGoogle Scholar
  47. Yang S-T, Wang H, Wang Y, Wang Y, Nie H, Liu Y (2011) Removal of carbon nanotubes from aqueous environment with filter paper. Chemosphere 82:621–626. doi: 10.1016/j.chemosphere.2010.10.048 CrossRefGoogle Scholar
  48. Yu JG et al (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482:241–251CrossRefGoogle Scholar
  49. Zhang X, Kah M, MTO J, Hofmann T (2012) Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes. Environ Sci Technol 46:7166–7173. doi: 10.1021/es300645m CrossRefGoogle Scholar
  50. Zindler F, Glomstad B, Altin D, Liu J, Jenssen BM, Booth AM (2016) Phenanthrene bioavailability and toxicity to Daphnia magna in the presence of carbon nanotubes with different physicochemical properties. Environ Sci Technol 50:12446–12454. doi: 10.1021/acs.est.6b03228 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF OceanTrondheimNorway
  3. 3.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  4. 4.School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution ControlHenan Normal UniversityXinxiangChina
  5. 5.Aquatic Ecology and Toxicology Section, Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany

Personalised recommendations