Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 28, pp 22510–22523 | Cite as

Toxic effects of copper on liver and cholinesterase of Clarias gariepinus

  • Siti Nadzirah Padrilah
  • Siti Aqlima AhmadEmail author
  • Nur Adeela Yasid
  • Mohd Khalizan Sabullah
  • Hassan Mohd Daud
  • Ariff Khalid
  • Mohd Yunus Shukor
Research Article

Abstract

The release of pollutants, especially heavy metals, into the aquatic environment is known to have detrimental effects on such an environment and on living organisms including humans when those pollutants are allowed to enter the food chain. The aim of this study is to analyse the damage to Clarias gariepinus’ liver caused by exposure to different concentrations of copper. In the present study, samples of C. gariepinus were exposed to sub-lethal copper sulphate (CuSO4) concentrations (from 0.2 to 20.0 mg/L) for 96 h. Physiological and behavioural alterations were observed with respect to their swimming pattern, mucus secretion and skin colour. Mortality was also observed at high concentrations of copper. Histopathological alterations of the liver were analysed under light, transmission and scanning electron microscopies. The liver of the untreated group showed normal tissue structures, while histopathological abnormalities were observed in the treated fish under light and electron microscopes with increased copper concentrations. Histopathological abnormalities include necrosis, melanomacrophage, hepatic fibrosis and congested blood vessels. In addition, the enzyme activity of liver cholinesterase (ChE) was also found to be affected by copper sulphate, as 100% of cholinesterase activity was inhibited at 20.0 mg/L. Thus, liver enzyme activity and histopathological changes are proven to be alternative sources for biomarkers of metal toxicity.

Keywords

Copper contamination Cholinesterase Clarias gariepinus Biomarker Acute toxicity Histopathology effect 

Notes

Acknowledgements

This project was supported by a fund (Putra-IPS) received from Universiti Putra Malaysia under the Grant Number 9481400. We also thank Universiti Putra Malaysia for providing a GRF scholarship to Miss Siti Nadzirah Padrilah.

References

  1. Abalaka SE (2015) Heavy metals bioaccumulation and histopathological changes in Auchenoglanis occidentalis fish from Tiga dam, Nigeria. J Environ Health Sci Eng 13:67. doi: 10.1186/s40201-015-0222-y CrossRefGoogle Scholar
  2. Abdel-Moneim AM (2014) Histopathological and ultrastructural perturbations in tilapia liver as potential indicators of pollution in Lake al-Asfar, Saudi Arabia. Environ Sci Pollut Res Int 21:4387–4396. doi: 10.1007/s11356-013-2185-9 CrossRefGoogle Scholar
  3. Abdel-Warith A, Younis E, Al-Asgah N, Wahbi O (2011) Effect of zinc toxicity on liver histology of Nile tilapia, Oreochromis niloticus. Sci Res Essays 6:3760–3769CrossRefGoogle Scholar
  4. Adakole JA (2012) Toxicological assessment using Clarias gariepinus and characterization of an edible oil mill wastewater. Braz J Aquat Sci Technol 15:63–67Google Scholar
  5. Agbebi FO, Owoeye O (2012) Toxicity of copper (11) Tetraoxo Sulphate to African catfish (Clarias Gariepinus) fingerlings. Asian J Agric Rural Dev 2:46–54Google Scholar
  6. Agius C, Roberts RJ (2003) Melano-macrophage centres and their role in fish pathology. J Fish Dis 26:499–509CrossRefGoogle Scholar
  7. Ahmad SA, Sabullah MK, Basirun AA, Khalid A, Yasid NA, Iqbal IM, Shamaan NA, Syed MA, Shukor MY (2016a) Evaluation of cholinesterase from muscle and blood of Anabas testudinus as detection of metal ions. Fresenius Environ Bull 25:4253–4260Google Scholar
  8. Ahmad SA, Wong YF, Shukor MY, Sabullah MK, Yasid NA, Hayat NM, Shamaan NA, Khalid A, Syed MA (2016b) An alternative bioassay using Anabas testudineus (climbing perch) cholinesterase for metal ions detection. Int Food Res J 23:1446–1452Google Scholar
  9. Ahmed MK, Habibullah-Al-Mamun M, Parvin E, Akter MS, Khan MS (2013) Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Exp Toxicol Pathol 65:903–909. doi: 10.1016/j.etp.2013.01.003 CrossRefGoogle Scholar
  10. Ajani EK, Akpoilih BU (2010) Effect of chronic dietary copper exposure on haematology and histology of common carp ( Cyprinus carpioL. ). J Appl Sci Environ Manag 14:39–45. doi: 10.4314/jasem.v14i4.63254 Google Scholar
  11. Al-Ghais SM (2013) Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish. Mar Pollut Bull 74:183–186. doi: 10.1016/j.marpolbul.2013.07.005 CrossRefGoogle Scholar
  12. Annabi A, Said K, Messaoudi I (2013) Cadmium: bioaccumulation, histopathology and detoxifying mechanisms in fish. Am J Res Commun 4:60–79Google Scholar
  13. Ashraf MA, Maah MJ, Yusoff I (2011) Bioaccumulation of heavy metals in fish species collected from former tin mining catchment. Int J Environ Res 6:209–218Google Scholar
  14. Askar KA, Kudi AC, Moody AJ (2011) Comparative analysis of cholinesterase activities in food animals using modified Ellman and Michel assays. Can J Vet Res 75:261–270Google Scholar
  15. Atabati A, Keykhosravi A, Askari-Hesni M, Vatandoost J, Motamedi M (2015) Effects of copper sulfate on gill histopathology of grass carp (Ctenopharyngodon idella). Iran J Ichthyol 2:35–42Google Scholar
  16. Ayotunde EO, Ofem BO (2008) Acute and chronic toxicity of pawpaw ( Carica papaya ) seed powder to adult Nile tilapia ( Oreochromis niloticus Linne 1757). Afr J Biotechnol 7:2265–2274Google Scholar
  17. Bainy ACD, de Medeiros MHG, Mascio PD, de Almeida EA (2006) In vivo effects of metals on the acetylcholinesterase activity of the Perna perna mussel’s digestive gland. Rev Biotemas 19:35–39Google Scholar
  18. Balambigai N, Aruna D (2011) Impact of copper sulphate, an essential micronutrient on ACh, AChE and Na+K+ATPase in various tissues of the fish Cyprinus carpio (L.) Res J Environ Toxicol 5:141–146. doi: 10.3923/rjet.2011.141.146 CrossRefGoogle Scholar
  19. Bhatkar NV (2011) Chromium, nickel and zinc induced histopathological alterations in the liver of Indian common carp & Labeo rohita (ham.) J Appl Sci Environ Manag 15:331–336. doi: 10.4314/jasem.v15i2.68517 Google Scholar
  20. Bhoraskar S, Kothari S (1997) Toxicity of mercury and zinc in the liver of a cat fish Clarias batrachus. In: Recent Advances in fresh water Biology. Rao,Amol Publication Pvt.LtdGoogle Scholar
  21. Bunton TE, Baksi SM, George SG, Frazier JM (1987) Abnormal hepatic copper storage in a teleost fish (Morone americana). Vet Pathol 24:515–524CrossRefGoogle Scholar
  22. Camargo MMP, Martinez CBR (2007) Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotropical Ichthyol 5:327–336. doi: 10.1590/S1679-62252007000300013 CrossRefGoogle Scholar
  23. Das S, Gupta A (2013) Accumulation of copper in different tissues and changes in oxygen consumption rate in Indian flying barb, Esomus danricus (Hamilton-Buchanan) exposed to sub-lethal concentrations of copper. Jordan J Biol Sci 6:21–24CrossRefGoogle Scholar
  24. de Lima D, Roque GM, de Almeida EA (2013) In vitro and in vivo inhibition of acetylcholinesterase and carboxylesterase by metals in zebrafish (Danio rerio). Mar Environ Res 91:45–51. doi: 10.1016/j.marenvres.2012.11.005 CrossRefGoogle Scholar
  25. Devi Y, Mishra A (2013) Histopathological alterations in gill and liver anotomy of fresh water, air breathing fish Channa punctatus after pesticide Hilban® (Chlorpyrifos) treatment. Adv Biomed Res 4:57–62Google Scholar
  26. Doaa MM, Hanan H (2013) Histological changes in selected organs of Oreochromis niloticus exposed to doses of lead acetate. J Life Sci Biomed 3:256–263Google Scholar
  27. Durrant AR, Tamayev L, Anglister L (2012) Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice. Front Mol Neurosci 5:1–10. doi: 10.3389/fnmol.2012.00073 CrossRefGoogle Scholar
  28. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118Google Scholar
  29. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. doi: 10.1016/0006-2952(61)90145-9 CrossRefGoogle Scholar
  30. El-Moselhy KM, Othman AI, Abd El-Azem H, El-Metwally MEA (2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt J Basic Appl Sci 1:97–105. doi: 10.1016/j.ejbas.2014.06.001 CrossRefGoogle Scholar
  31. Ezeonyejiaku CD, Obiakor MO, Ezenwelu CO (2011) Toxicity of copper sulphate and behavioral locomotor response of tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus) species. Online J Anim Feed Res 1:130–134Google Scholar
  32. Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181:879–884. doi: 10.1083/jcb.200802081 CrossRefGoogle Scholar
  33. Fanta E, Rios FS, Romão S, Vianna ACC, Freiberger S (2003) Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol Environ Saf 54:119–130. doi: 10.1016/S0147-6513(02)00044-1 CrossRefGoogle Scholar
  34. Farhangi M, Aliakbariyan A, Kashani M, Kanani HG (2014) Effect of copper sulphate on behavioral and histopathological changes in roach, Rutilus caspicus. Casp J Environ Sci 12:73–79Google Scholar
  35. Figueiredo-Fernandes A, Ferreira-Cardoso JV, Garcia-Santos S, Monteiro SM, Carrola J, Matos P, Fontaínhas-Fernandes A (2007) Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesqui Veterinária Bras 27:103–109. doi: 10.1590/S0100-736X2007000300004 CrossRefGoogle Scholar
  36. Frasco MF, Fournier D, Carvalho F, Guilhermino L (2008) Does mercury interact with the inhibitory effect of dichlorvos on Palaemon serratus (Crustacea: Decapoda) cholinesterase? Sci Total Environ 404:88–93. doi: 10.1016/j.scitotenv.2008.06.012 CrossRefGoogle Scholar
  37. Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45CrossRefGoogle Scholar
  38. Gbem TT, Balogun JK, Lawal FA, Annune PA (2001) Trace metal accumulation in Clarias gariepinus (Teugels) exposed to sublethal levels of tannery effluent. Sci Total Environ 271:1–9. doi: 10.1016/S0048-9697(00)00773-7 CrossRefGoogle Scholar
  39. Glusker JP, Katz AK, Bock CW (1999) Metal ions in biological systems. Rigaku J 16:8–16Google Scholar
  40. Gouzi H, Coradin T, Delicado EN, Unal MU, Benmansour A (2010) Inhibition kinetics of Agaricus bisporus (J.E. Lange) imbach polyphenol oxidase. Open Enzyme Inhib J 3:1–7. doi: 10.2174/1874940201003010001 CrossRefGoogle Scholar
  41. Govindasamy R, Rahuman AA (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J Environ Sci 24:1091–1098. doi: 10.1016/S1001-0742(11)60845-0 CrossRefGoogle Scholar
  42. Hadi A, Ahwan S (2012) Histopathological changes in gills, liver and kidney of fresh water fish, Tilapia zillii, exposed to aluminum. Int J Pharm Sci 3:2071–2081Google Scholar
  43. Haley TJ, Berndt WO (2002) Toxicology. CRC Press, Boca RatonGoogle Scholar
  44. Hayat NM, Shamaan NA, Shukor MY, Sabullah MK, Syed MA, Khalid A, Dahalan FA, Khalil KA, Ahmad SA (2015). Cholinesterase-based biosensor using Lates calcarifer (Asian Seabass) brain for detection of heavy metals. J Chem Pharma Sci 8:376–381Google Scholar
  45. Hayat NM, Shamaan NA, Sabullah MK, Shukor MY, Syed MA, Khalid A, Dahalan FA, Ahmad SA (2016) The use of Lates calcarifer as a biomarker for heavy metals detection. Rendiconti Lincei 27:463–472. doi: 10.1007/s12210-015-0501-7 CrossRefGoogle Scholar
  46. Hayat NM, Shamaan NA, Dahalan FA, Ahmad SA (2017) Characterisation of cholinesterase from kidney tissue of Asian seabass Lates calcarifer and its inhibition in presence of metal ions. J Environ Biol 38:383–388CrossRefGoogle Scholar
  47. Hedayati A, Ghaffari Z (2013) Evaluation of the effects of exposure to copper sulfate on some eco-physiological parameters in silver carp (Hypophthalmichthys Molitrix). Iran J Toxicol 7:887–893Google Scholar
  48. Ibrahim S, Authman M, Gaber H, El-Kasheif M (2013) Bioaccumulation of heavy metals and their histopathological impact on muscles of Clarias gariepinus from el-Rahawy drain, Egypt. Int J Environ Sci Eng 4:57–73Google Scholar
  49. Jaffal A, Betoulle S, Biagianti-Risbourg S, Terreau A, Sanchez W, Paris-Palacios S (2015) Heavy metal contamination and hepatic toxicological responses in brown trout (Salmo trutta) from the Kerguelen Islands. Polar Res 34:22784. doi: 10.3402/polar.v34.22784 CrossRefGoogle Scholar
  50. Jiraungkoorskul W, Sahaphong S, Kangwanrangsan N (2007) Toxicity of copper in butterfish (Poronotus triacanthus): tissues accumulation and ultrastructural changes. Environ Toxicol 22:92–100. doi: 10.1002/tox.20238 CrossRefGoogle Scholar
  51. Joshi P (2011) Impact of zinc sulphate on behavioural responses in the freshwater fish Clarias Batrachus (Linn.) Online Int Interdiscip Res J 1:76–82Google Scholar
  52. Karayakar F, Cicik B, Ciftci N, Karaytug S, Erdem C, Ozcan AY (2010) Accumulation of copper in liver, gill and muscle tissues of Anguilla anguilla (Linnaeus, 1758). J Anim Vet Adv 9:2271–2274. doi: 10.3923/javaa.2010.2271.2274 CrossRefGoogle Scholar
  53. Kumar M, Kumar P, Devi S (2015) Toxicity of copper sulphate on behavioural parameter and respiratory surveillance in freshwater catfish, Clarias batrachus (Lin.) Res J Chem Environ Sci 3:22–28Google Scholar
  54. Kumar S, Pant SC (1981) Histopathologic effects of acutely toxic levels of copper & zinc on gills, liver & kidney of Puntius conchonius (ham.) Indian J Exp Biol 19:191–194Google Scholar
  55. Lehtonen KK, Leiniö S (2003) Effects of exposure to copper and malathion on metallothionein levels and acetylcholinesterase activity of the mussel Mytilus edulis and the clam Macoma balthica from the northern Baltic Sea. Bull Environ Contam Toxicol 71:489–496CrossRefGoogle Scholar
  56. Liebel S, Tomotake MEM, Ribeiro CAO (2013) Fish histopathology as biomarker to evaluate water quality. Ecotoxicol Environ Contam 8:09–15Google Scholar
  57. Loganathan K, Velmurugan B, Hongray Howrelia J, Selvanayagam M, Patnaik BB (2006) Zinc induced histological changes in brain and liver of Labeo rohita (ham.) J Environ Biol 27:107–110Google Scholar
  58. López-Alonso M, Prieto F, Miranda M, Castillo C, Hernández J, Benedito JL (2005) The role of metallothionein and zinc in hepatic copper accumulation in cattle. Vet J 169:262–267. doi: 10.1016/j.tvjl.2004.01.019 CrossRefGoogle Scholar
  59. Mela M, Guiloski IC, Doria HB, Rabitto IS, da Silva CA, Maraschi AC, Prodocimo V, Freire CA, Randi MAF, Ribeiro CAO, de Assis HCS (2013) Risks of waterborne copper exposure to a cultivated freshwater Neotropical catfish (Rhamdia quelen). Ecotoxicol Environ Saf 88:108–116. doi: 10.1016/j.ecoenv.2012.11.002 CrossRefGoogle Scholar
  60. Miranda AL, Roche H, Randi MAF, Menezes ML, Ribeiro CA (2008) Bioaccumulation of chlorinated pesticides and PCBs in the tropical freshwater fish Hoplias malabaricus: histopathological, physiological, and immunological findings. Environ Int 34:939–949. doi: 10.1016/j.envint.2008.02.004 CrossRefGoogle Scholar
  61. Mohamed Abu Zeid IE, Syed MA, Ramli J, Arshad JH, Omar I, Shamaan NA (2005) Bioaccumulation of carbofuran and endosulfan in the African catfish Clarias gariepinus. Pertanika J Sci Technol 13:249–256Google Scholar
  62. Muthukumaravel K (2014) Light and scanning electron microscopic evaluation and effects of cadmium on the gills of the freshwater fish Labeo rohita. Int J Pharm Biol Arch 4:999–1006Google Scholar
  63. Najimi S, Bouhaimi A, Daubèze M, Zekhnini A, Pellerin J, Narbonne JF, Moukrim A (1997) Use of acetylcholinesterase in Perna perna and Mytilus galloprovincialis as a biomarker of pollution in Agadir Marine Bay (south of Morocco). Bull Environ Contam Toxicol 58:901–908CrossRefGoogle Scholar
  64. Nandan S, Kumar BG (2014) Copper toxicity: haematological and histopathological changes and prophylactic role of vitamin C in the fish, Anabas testudineus (Bloch, 1792). J Zool Stud 1:4–13Google Scholar
  65. Nemcsók J, Németh Á, Buzás Z, Boross L (1984) Effects of copper, zinc and paraquat on acetylcholinesterase activity in carp (Cyprinus carpio L.) Aquat Toxicol 5:23–31. doi: 10.1016/0166-445X(84)90029-8 CrossRefGoogle Scholar
  66. Olojo EAA, Olurin KB, Mbaka G, Oluwemimo AD (2005) Histopathology of the gill and liver tissues of the African catfish Clarias gariepinus exposed to lead. Afr J Biotechnol 4:117–122Google Scholar
  67. Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci Off J Soc Toxicol 119:3–19. doi: 10.1093/toxsci/kfq268 CrossRefGoogle Scholar
  68. Osman AGM, Abd El Reheem ABM, Abuelfadl KY, GadEl-Rab AG (2010) Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Nat Sci 2:1302–1311. doi: 10.4236/ns.2010.211158 Google Scholar
  69. Osman MM, EL-Fikym SA, Soheir YM, Abeer A (2009) Impact of water pollution on histopathological and electrophoretic characters of Oreochromis niloticus fish. Res J Environ Toxicol 3:9–23. doi: 10.3923/rjet.2009.9.23 CrossRefGoogle Scholar
  70. Ostaszewska T, Chojnacki M, Kamaszewski M, Sawosz-Chwalibóg E (2016) Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environ Sci Pollut Res Int 23:1621–1633. doi: 10.1007/s11356-015-5391-9 CrossRefGoogle Scholar
  71. Pacheco M, Santos MA (2002) Biotransformation, genotoxic, and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.) Ecotoxicol Environ Saf 53:331–347. doi: 10.1016/S0147-6513(02)00017-9 CrossRefGoogle Scholar
  72. Papagiannis I, Kagalou I, Leonardos J, Petridis D, Kalfakakou V (2004) Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Int 30:357–362. doi: 10.1016/j.envint.2003.08.002 CrossRefGoogle Scholar
  73. Paris-Palacios S, Biagianti-Risbourg S, Vernet G (2000) Biochemical and (ultra)structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquat Toxicol Amst Neth 50:109–124CrossRefGoogle Scholar
  74. Parvathi K, Sivakumar P, Sarasu C (2011) Effects of chromium on histological alterations of gill, liver and kidney of fresh water teleost, Cyprinus carpio (L.) J Fish Int 6:1–5. doi: 10.3923/jfish.2011.1.5 CrossRefGoogle Scholar
  75. Patnaik BB, Hongray HJ, Mathews T, Selvanayagam M (2011) Histopathology of gill, liver, muscle and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. Afr J Biotechnol 10:12218–12223Google Scholar
  76. Pourahmad J, O’Brien PJ (2000) A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology 143:263–273CrossRefGoogle Scholar
  77. Quifen D, Yang Y, Shi S (2012) Nutrition and changes in fish body colouration in catfish. In: AQUA Culture Asia Pacific Magazine. Aqua Research Pte Ltd, Singapore, pp 22–26Google Scholar
  78. Quintaneiro C, Monteiro M, Soares AMVM, Ranville J, Nogueira AJA (2014) Cholinesterase activity on Echinogammarus meridionalis (pinkster) and Atyaephyra desmarestii (millet): characterisation and in vivo effects of copper and zinc. Ecotoxicol Lond Engl 23:449–458. doi: 10.1007/s10646-014-1204-z CrossRefGoogle Scholar
  79. Rajkowska M, Protasowicki M (2013) Distribution of metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophy in Northwestern Poland. Environ Monit Assess 185:3493–3502. doi: 10.1007/s10661-012-2805-8 CrossRefGoogle Scholar
  80. Reddy SJ (2012) Cadmium effect on histo-biomarkers and melano-macrophage centers in liver and kidney of Cyprinus carpio. World J Fish Mar Sci 4:179–184Google Scholar
  81. Ribeiro CAO, Vollaire Y, Sanchez-Chardi A, Roche H (2005) Bioaccumulation and the effects of organochlorine pesticides, PAH and heavy metals in the eel (Anguilla anguilla) at the Camargue nature reserve, France. Aquat Toxicol Amst Neth 74:53–69. doi: 10.1016/j.aquatox.2005.04.008 CrossRefGoogle Scholar
  82. Ruan R, Zou L, Sun S, Liu J, Wen L, Gao D, Ding W (2015) Cell blebbing upon addition of cryoprotectants: a self-protection mechanism. PLoS One 10:1–14. doi: 10.1371/journal.pone.0125746 Google Scholar
  83. Sabullah MK, Ahmad SA, Jirangon H, Gansau AJ, Sulaiman MR (2014a) Acute effect of copper on Puntius javanicus survival and a current opinion for future biomarker development. J Environ Bioremediation Toxicol 2:28–32Google Scholar
  84. Sabullah MK, Sulaiman MR, Shukor MYA, Syed MA, Shamaan NA, Khalid A, Ahmad SA (2014b) The assessment of cholinesterase from the liver of Puntius javanicus as detection of metal ions. Sci World J. doi: 10.1155/2014/571094
  85. Sabullah MK, Shukor MY, Sulaiman MR, Shamaan NA, Syed MA, Khalid A, Ahmad SA (2014c) The effect of copper on the ultrastructure of Puntius javanicus hepatocyte. Aust J Basic Appl Sci 8:245–251Google Scholar
  86. Sabullah MK, Ahmad SA, Shukor MY, Gansau AJ, Syed MA, Sulaiman MR, Shamaan NA (2015a) Heavy metal biomarker: fish behavior, cellular alteration, enzymatic reaction and proteomics approaches. Int Food Res J 22:435–454Google Scholar
  87. Sabullah MK, Sulaiman MR, Shukor MYA, Shamaan NA, Khalid A, Ahmad SA (2015b) In vitro and in vivo effects of Puntius javanicus cholinesterase by copper. Fresenius Environ Bull 24:4615–4621Google Scholar
  88. Saluja U, Kumar S (2005) Inhibitory chronic effect of copper sulphate on acetylcholinesterase activity and enzyme kinetics with its subsequent reactivation in the stomach of Rattus norvegicus. Asian J Exp Sci 19:65–71Google Scholar
  89. Sant’Anna MCB, Soares V d M, Seibt KJ, Ghisleni G, Rico EP, Rosemberg DB, de Oliveira JR, Schröder N, Bonan CD, Bogo MR (2011) Iron exposure modifies acetylcholinesterase activity in zebrafish (Danio rerio) tissues: distinct susceptibility of tissues to iron overload. Fish Physiol Biochem 37:573–581. doi: 10.1007/s10695-010-9459-7 CrossRefGoogle Scholar
  90. Saxena MP, Saxena HM (2007) Histopathological changes in lymphoid organs of fish after exposure to water polluted with heavy metals. Internet J Vet Med 5:1–8Google Scholar
  91. Siddiqa A, Islam MJ, Rahman MS, Uddin MN, Fancy R (2016) Assessing toxicity of organophosphorus insecticide on local fish species of Bangladesh. Int J Fish Aquat Stud 4:670–676Google Scholar
  92. Sindhe VR, Kulkarni RS (2004) Gonadosomatic and hepatosomatic indices of the freshwater fish Notopterus notopterus (Pallas) in response to some heavy metal exposure. J Environ Biol 25:365–368Google Scholar
  93. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253. doi: 10.4103/0253-7613.81505 CrossRefGoogle Scholar
  94. Singh S, Bhati DPS (1994) Effect of zinc chloride on certain morphological parameters of the blood in Channa punctatus (Bloch.) Pollut Res 134:381–384Google Scholar
  95. Stoytcheva M (2002) Electrochemical evaluation of the kinetic parameters of a heterogeneous enzyme reaction in presence of metal ions. Electroanalysis 14:923–927. doi: 10.1002/1521-4109(200207)14:13<923::AID-ELAN923>3.0.CO;2-J CrossRefGoogle Scholar
  96. Thaker AA, Haritos AA (1989) Cadmium bioaccumulation and effects on soluble peptides, proteins and enzymes in the hepatopancreas of the shrimp Callianassa tyrrhena. Comp Biochem Physiol Part C Comp Pharmacol 94:63–70. doi: 10.1016/0742-8413(89)90145-X CrossRefGoogle Scholar
  97. Varanka Z, Rojik I, Varanka I, Nemcsók J, Ábrahám M (2001) Biochemical and morphological changes in carp (Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid. Comp Biochem Physiol C Toxicol Pharmacol 128:467–477. doi: 10.1016/S1532-0456(01)00166-1 CrossRefGoogle Scholar
  98. Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino L (2009) Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Chemosphere 76:1416–1427. doi: 10.1016/j.chemosphere.2009.06.005 CrossRefGoogle Scholar
  99. Weis JS, Smith G, Zhou T, Santiago-Bass C, Weis P (2001) Effects of contaminants on behavior: biochemical mechanisms and ecological consequences: killifish from a contaminated site are slow to capture prey and escape predators; altered neurotransmitters and thyroid may be responsible for this behavior, which may produce population changes in the fish and their major prey, the grass shrimp. Bioscience 51:209–217. doi: 10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2 CrossRefGoogle Scholar
  100. Wierdl M, Morton CL, Danks MK, Potter PM (2000) Isolation and characterization of a cDNA encoding a horse liver butyrylcholinesterase: evidence for CPT-11 drug activation. Biochem Pharmacol 59:773–781CrossRefGoogle Scholar
  101. Zelikoff JT (1993) Metal pollution-induced immunomodulation in fish. Annu Rev Fish Dis 3:305–325. doi: 10.1016/0959-8030(93)90041-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Siti Nadzirah Padrilah
    • 1
  • Siti Aqlima Ahmad
    • 1
    Email author
  • Nur Adeela Yasid
    • 1
  • Mohd Khalizan Sabullah
    • 2
  • Hassan Mohd Daud
    • 3
  • Ariff Khalid
    • 4
  • Mohd Yunus Shukor
    • 1
  1. 1.Department of Biochemistry, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Faculty of Science and Natural ResourcesUniversiti Malaysia SabahKota KinabaluMalaysia
  3. 3.Veterinary Clinical Studies, Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Faculty of Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia

Personalised recommendations