Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22368–22377 | Cite as

Synergistic interface behavior of strontium adsorption using mixed microorganisms

  • Wenyuan Hu
  • Faqin DongEmail author
  • Guangmin Yang
  • Xin Peng
  • Xiaojun Huang
  • Mingxue Liu
  • Jing Zhang
Interface Effect of Ultrafine Mineral Particles and Microorganisms


The proper handling of low-level radioactive waste is crucial to promote the sustainable development of nuclear power. Research into the mechanism for interactions between bacterium and radionuclides is the starting point for achieving successful remediation of radionuclides with microorganisms. Using Sr(II) as a simulation radionuclide and the mixed microorganisms of Saccharomyces cerevisiae and Bacillus subtilis as the biological adsorbent, this study investigates behavior at the interface between Sr(II) and the microorganisms as well as the mechanisms governing that behavior. The results show that the optimal ratio of mixed microorganisms is S. cerevisiae 2.0 g L−1 to B. subtilis 0.05 g L−1, and the optimal pH is about 6.3. Sr(II) biosorption onto the mixed microorganisms is spontaneous and endothermic in nature. The kinetics and the equilibrium isotherm data of the biosorption process can be described with pseudo-second-order equation and the Langmuir isotherm equation, respectively. The key interaction between the biological adsorbent and Sr(II) involves shared electronic pairs arising from chemical reactions via bond complexation or electronic exchange, and spectral and energy spectrum analysis show that functional groups (e.g., hydroxyl, carboxyl, amino, amide) at the interface between the radionuclide and the mixed microorganisms are the main active sites of the interface reactions.


Biosorption Mixed microorganisms Strontium ions Interface behavior 



This study was sponsored by the National Basic Research Program of China (973 Program: 2014CB846003). The author would also like to thank Dr. Patrick Diehl for his help in revising and polishing this paper.

Supplementary material

11356_2017_9891_MOESM1_ESM.docx (113 kb)
ESM 1 (DOCX 113 kb)


  1. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257CrossRefGoogle Scholar
  2. Aksu Z, Balibek E (2007) Chromium(VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater 145(1–2):210–220CrossRefGoogle Scholar
  3. Antelmann H, Töwe S, Dirk Albrecht A, Hecker M (2007) The phosphorus source phytate changes the composition of the cell wall proteome in Bacillus subtilis. J Proteome Res 6(2):897–903CrossRefGoogle Scholar
  4. Chen C, Wang JL (2008) Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. J Hazard Mater 151(1):65–70CrossRefGoogle Scholar
  5. Chen C, Wang JL (2010) Removal of heavy metal ions by waste biomass of Saccharomyces cerevisiae. J Environ Eng 136(1):95–102CrossRefGoogle Scholar
  6. Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36(3):299–307CrossRefGoogle Scholar
  7. Fang L, Wei X, Cai P, Huang QY, Chen H, Liang W, Rong XM (2011) Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour Technol 102(2):1137–1141CrossRefGoogle Scholar
  8. Fang LC, Huang QY, Wei X, Liang W, Rong XM, Chen WL, Cai P (2010) Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresour Technol 101(15):5774–5779CrossRefGoogle Scholar
  9. Günay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146(1):362–371CrossRefGoogle Scholar
  10. Hu QH, Weng JQ, Wang JS (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioactiv 101(6):426–437CrossRefGoogle Scholar
  11. Humelnicu D, Dinu MV, Drăgan ES (2011) Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J Hazard Mater 185(1):447–455CrossRefGoogle Scholar
  12. Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioactiv 78(2):151–177CrossRefGoogle Scholar
  13. Lovley DR, Phillips EJ, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350(6317):413–416CrossRefGoogle Scholar
  14. Liu MX, Dong FQ, Zhang W, Nie XQ, Sun SY, Wei HF, Luo L, Xiang S, Zhang GG (2016) Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: a decrement solution for nuclide and heavy metal disposal. J Hazard Mater 314:295–303CrossRefGoogle Scholar
  15. Liu N, Liao J, Luo S, Yang YY, Jin JN, Zhang TM, Zhao PJ (2003) Biosorption of 241Am by immobilized Saccharomyces cerevisiae. J Radioanal Nucl Ch 258(1):59–63CrossRefGoogle Scholar
  16. Liu X, Hu WY, Huang XJ, Deng HQ (2015) Highly effective biosorption of Sr(II) from low level radioactive wastewater. Water Sci Technol 71(11):1727–1733CrossRefGoogle Scholar
  17. Mashkani SG, Ghazvini PTM (2009) Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: application of micro-PIXE for measurement of biosorption. Bioresour Technol 100(6):1915–1921CrossRefGoogle Scholar
  18. Mcmurrough I, Rose AH (1967) Effect of growth rate and substrate limitation on the composition and structure of the cell wall of Saccharomyces cerevisiae. Biochem J 105(1):189CrossRefGoogle Scholar
  19. Morcillo F, Gonzalez-Munoz MT, Reitz T, Romero-Gonzalez ME, Arias JM, Merroun ML (2014) Biosorption and biomineralization of U(VI) by the marine bacterium Idiomarina loihiensis MAH1: effect of background electrolyte and pH. PLoS One 9(3):e91305CrossRefGoogle Scholar
  20. Osmanlioglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 137(1):332–335CrossRefGoogle Scholar
  21. Özacar M, Şengil IA (2003) Adsorption of reactive dyes on calcined alunite from aqueous solutions. J Hazard Mater 98(1):211–224CrossRefGoogle Scholar
  22. Seliman AF (2012) Affinity and removal of radionuclides mixture from low-level liquid waste by synthetic ferrierites. J Radioanal Nucl Ch 292(2):729–738CrossRefGoogle Scholar
  23. Shevchuk IA, Klimenko NA, Stavskaya SS (2010) Sorption of ions of U(VI) and strontium by biosorption based on Bacillus polymyxa, IMV 8910 in aqueous systems. J Water Chem Techno 32(3):176–181CrossRefGoogle Scholar
  24. Tuzen M, Sari A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158(2):200–206CrossRefGoogle Scholar
  25. Warner NR, Christie CA, Jackson RB (2013) Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ Sci Technol 47(20):11849–11857CrossRefGoogle Scholar
  26. Wu YH, Wen YJ, Zhou JX, Dai Q, Wu YY (2012) The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic(III). Environ Sci Pollut R 19(8):3371–3379CrossRefGoogle Scholar
  27. Yang DJ, Zheng ZF, Liu HW, Zhu HY, Ke XB, Xu Y, Wu D, Sun Y (2008) Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. J Phys Chem C 112(42):16275–16280CrossRefGoogle Scholar
  28. Young V, Otagawa T (1985) XPS studies on strontium compounds. Applications of Surface Science 20(3):228–248CrossRefGoogle Scholar
  29. Zhou K, Liu YC, Yang ZG, Liu HZ (2017) Biosorption of U(VI) by modified Hottentot fern: kinetics and equilibrium studies. J Environ Radioactiv 167:13–19CrossRefGoogle Scholar
  30. Zhou LM, Wang Y, Zou HB, Liang XZ, Zeng K, Liu ZR, Adesina AA (2016) Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified giant kelp, biomass. J Radioanal Nucl Ch 307(1):635–644CrossRefGoogle Scholar
  31. Zotina TA, Kalacheva GS, Bolsunovsky AY (2011) Biochemical fractionation and cellular distribution of americium and plutonium in the biomass of freshwater macrophytes. J Radioanal Nucl Ch 290(2):447–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Wenyuan Hu
    • 1
    • 2
  • Faqin Dong
    • 2
    • 3
    Email author
  • Guangmin Yang
    • 1
  • Xin Peng
    • 1
  • Xiaojun Huang
    • 4
  • Mingxue Liu
    • 3
  • Jing Zhang
    • 1
  1. 1.School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.School of Environment and ResourceSouthwest University of Science and TechnologyMianyangChina
  3. 3.Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of ChinaMianyangChina
  4. 4.China National Quality Supervision and Inspection Centre for Alcoholic Beverage Products and Processed FoodLuzhouChina

Personalised recommendations