Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 22, pp 21296–21307 | Cite as

Organophosphorus pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture

  • Gabriela Briceño
  • Karen Vergara
  • Heidi Schalchli
  • Graciela Palma
  • Gonzalo Tortella
  • María Soledad Fuentes
  • María Cristina Diez
Advances in Environmental Biotechnology and Engineering 2016

Abstract

The current study aimed to evaluate the removal of a pesticide mixture composed of the insecticides chlorpyrifos (CP) and diazinon (DZ) from liquid medium, soil and a biobed biomixture by a Streptomyces mixed culture. Liquid medium contaminated with 100 mg L−1 CP plus DZ was inoculated with the Streptomyces mixed culture. Results indicated that microorganisms increased their biomass and that the inoculum was viable. The inoculum was able to remove the pesticide mixture with a removal rate of 0.036 and 0.015 h−1 and a half-life of 19 and 46 h−1 for CP and DZ, respectively. The sterilized soil and biobed biomixture inoculated with the mixed culture showed that Streptomyces was able to colonize the substrates, exhibiting an increase in population determined by quantitative polymerase chain reaction (q-PCR), enzymatic activity dehydrogenase (DHA) and acid phosphatase (APP). In both the soil and biomixture, limited CP removal was observed (6–14%), while DZ exhibited a removal rate of 0.024 and 0.060 day−1 and a half-life of 29 and 11 days, respectively. Removal of the organophosphorus pesticide (OP) mixture composed of CP and DZ from different environmental matrices by Streptomyces spp. is reported here for the first time. The decontamination strategy using a Streptomyces mixed culture could represent a promising alternative to eliminate CP and DZ residues from liquids as well as to eliminate DZ from soil and biobed biomixtures.

Keywords

Chlorpyrifos Diazinon Degradation Enzymatic activity Soil Biobed biomixture 

Notes

Acknowledgements

The authors acknowledge the financial support from the National Fund for Scientific and Technological Development, FONDECYT Project N° 11130716 and FONDECYT Project N° 1161481; and the National Commission for Scientific and Technological Research (CONICYT)—Ministry of Science, Technology and Productive Innovation (MINCYT), Programme of Scientific International Cooperation (Chile-Argentina) PCCI 140056.

References

  1. Abo-Amer AE (2011) Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21:71–80CrossRefGoogle Scholar
  2. Abo-Amer AE (2012) Characterization of a strain of Pseudomonas putida isolated from agricultural soil that degrades cadusafos (an organophosphorus pesticide). World J Microbiol Biotechnol 28:805–814CrossRefGoogle Scholar
  3. Abraham J, Silambarasan S, Logeswari P (2014) Simultaneous degradation of organophosphorus and organochlorine pesticides by bacterial consortium. J Taiwan Inst Chem Eng 45:2590–2596CrossRefGoogle Scholar
  4. Accinelli C, Saccà ML, Mencarelli M, Vicari A (2012) Application of bioplastic moving bed biofilm carriers for the removal of synthetic pollutants from wastewater. Bioresour Technol 120:180–186CrossRefGoogle Scholar
  5. Afipa, Asociacion Nacional de Fabricantes e Importadores de Productos Fitosanitarios Agrícolas AG (2010) Manual fitosaniatrio 2009–2010. Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, ChileGoogle Scholar
  6. Aggarwal V, Deng X, Tuli A, Goh KS (2013) Diazinon—chemistry and environmental fate: a California perspective. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York. doi: 10.1007/978-1-4614-5577-6_5 Google Scholar
  7. Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47:263–570CrossRefGoogle Scholar
  8. Alef K (1995) Dehydrogenase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, LondonGoogle Scholar
  9. Alvarez A, Saez JM, Davila JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62CrossRefGoogle Scholar
  10. Arriagada C, Manquel D, Cornejo P, Soto J, Sampedro I, Ocampo J (2012) Effects of the co-inoculation with saprobe and mycorrhizal fungi on Vaccinium corymbosum growth and some soil enzymatic activities. J Soil Sci Plant Nutr 12:283–294CrossRefGoogle Scholar
  11. Ballav S, Dastager SG, Kerkar S (2012) Biotechnological significance of Actinobacterial research in India. Recent Res Sci Technol 4:31–39Google Scholar
  12. Berberidou C, Kitsiou V, Lambropoulou DA, Antoniadis A, Ntonou E, Zalidis GC, Poulios I (2016) Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. J Environ Manag 195:133–139CrossRefGoogle Scholar
  13. Briceño G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeter Biodegr 73:1–7CrossRefGoogle Scholar
  14. Briceño G, Pizzul L, Diez MC (2013) Biodegradation of pesticides by actinobacteria and their possible application in biobed systems. In: Amoroso MJ, Benimeli CS, Cuozzo S (eds) Actinobacteria: application in bioremediation and production of industrial enzymes. Press, CRC, 286 ppGoogle Scholar
  15. Briceño G, Schalchli H, Rubilar O, Tortella GR, Mutis A, Benimeli CS, Palma G, Diez MC (2016a) Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture. Chemosphere 156:195–203CrossRefGoogle Scholar
  16. Briceño G, Schalchli H, Mutis A, Benimeli CS, Palma G, Tortella GR, Diez MC (2016b) Use of pure and mixed culture of diazinon-degrading Streptomyces to remove other organophosphorus pesticides. Int Biodeter Biodegr 114:193–201CrossRefGoogle Scholar
  17. Campos M, Perruchon C, Karas PA, Karavasilis D, Diez MC, Karpouzas DG (2017) Bioaugmentation and rhizosphere-assisted biodegradation as strategies for optimization of the dissipation capacity of biobeds. J Environ Manag 187:103–110CrossRefGoogle Scholar
  18. Cao X, Yang C, Liu R, Li Q, Zhang W, Liu J, Song C, Qiao C, Mulchandani A (2013) Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase. Biodegradation 24:295–303CrossRefGoogle Scholar
  19. Castillo MDP, Torstensson L, Stenstrom J (2008) Biobeds for environmental protection from pesticide use—a review. J Agric Food Chem 56:6206–6219CrossRefGoogle Scholar
  20. Castro-Gutierrez V, Masís-Mora M, Diez MC, Tortella GR, Rodríguez-Rodríguez CE (2017) Aging of biomixtures: effects on carbofuran removal and microbial community structure. Chemosphere 168:418–425CrossRefGoogle Scholar
  21. Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manag 114:372–380CrossRefGoogle Scholar
  22. Colin VL, Cortes AA, Aparicio JD, Amoroso MJ (2016) Potential application of a bioemulsifier-producing actinobacterium for treatment of vinasse. Chemosphere 144:842–847CrossRefGoogle Scholar
  23. Cycoń M, Piotrowska-Seget Z, Kozdrój J (2009a) Microbial characteristics of sandy soils exposed to diazinon under laboratory conditions. World J Microbiol Biotechnol 26:409–418Google Scholar
  24. Cycoń M, Wójcik M, Piotrowska-Seget Z (2009b) Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76:494–501CrossRefGoogle Scholar
  25. Cycón M, Zmijowska A, Wójcik M, Piotrowska-Seget Z (2013) Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manag 117:7–16CrossRefGoogle Scholar
  26. Cycón M, Mrozik A, Piotrowska-Seget Z (2017) Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere 172:52–71CrossRefGoogle Scholar
  27. Dębski B, Kania BF, Kuryl T (2007) Transformations of diazinon, an organophosphate compound in the environment and poisoning by this compound. Ekológia (Bratislava) 26:68–82Google Scholar
  28. Deng S, Chen Y, Wang D, Shi T, Wu X, Ma X, Li X, Hua R, Tang X, Li QX (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J Hazard Mater 297:17–24CrossRefGoogle Scholar
  29. Diez MC, Levio M, Briceño G, Rubilar O, Tortella G, Gallardo F (2013) Biochar as a partial replacement of peat in pesticide-degrading biomixtures formulated with different soil types. J Biobased Mater Bioenergy 7:1–7CrossRefGoogle Scholar
  30. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120CrossRefGoogle Scholar
  31. Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49CrossRefGoogle Scholar
  32. Fosu-Mensah B, Dartey E, Darko E, Gordon C (2016) Organophosphorus pesticide residues in soils and drinking water sources from cocoa producing areas in Ghana. Environ Syst Res 2016:5–10Google Scholar
  33. Fuentes MS, Saez MJ, Benimeli CS, Amoroso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231CrossRefGoogle Scholar
  34. Fuentes MS, Briceño G, Saez JM, Benimeli CS, Diez MC, Amoroso MJ (2013) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. Biomed Res Int 2013:1–9CrossRefGoogle Scholar
  35. Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS (2017) Removal of a mixture of pesticides by a Streptomyces consortium: influence of different soil systems. Chemosphere 173:359–367CrossRefGoogle Scholar
  36. Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40:1–23CrossRefGoogle Scholar
  37. ISP, Instituto de Salud Pública (2012) Informe de resultados de vigilancia de laboratorio. Plan nacional de vigilancia de residuos de plaguicidas en alimentos 2012. http://www.ispch.cl/sites/default/files/documento_tecnico/2013/12/Informe%20Plaguicidas%202012-2013.pdf. Accessed 10 november 2016
  38. Jastrzebska E (2011) The effect of chlorpyrifos and teflubenzuron on the enzymatic activity of soil. Polish J Environ Stud 20:209–210Google Scholar
  39. Karas PA, Perruchon C, Karanasios E, Papadopoulou ES, Manthou E, Sitra E, Ehaliotis C, Karpouzas DG (2016) Integrated biodepuration of pesticide-contaminated wastewaters from the fruit-packaging industry using biobeds: bioaugmentation, risk assessment and optimized management. J Hazard Mater 320:635–644CrossRefGoogle Scholar
  40. Lakshmi CV, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeterior Biodegr 62:204–209CrossRefGoogle Scholar
  41. Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N (2014) A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides. Toxicology 322:1–13CrossRefGoogle Scholar
  42. Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, Li S (2013) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus Sp. DT-1. Bioresour Technol 127:337–342CrossRefGoogle Scholar
  43. Muñoz-Quezada MT, Iglesias V, Lucero B, Steenland K, Boyd Barr D, Levy K, Ryan B, Alvarado S, Concha C (2012) Predictors of exposure to organophosphate pesticides in schoolchildren in the province of Talca, Chile. Environ Int 47:28–36CrossRefGoogle Scholar
  44. Navaratna D (2012) Reducing herbicide discharge to sensitive environments using membrane bioreactors. Submitted in partial fulfillment of the requirements for the degree of Doctor of Phylosophy (Engineering). Deakin University. 374 ppGoogle Scholar
  45. Njoroge SM, Munyao TM, Osano O (2016) Modeling relationship between organic carbon partition coefficient and pesticides solubility of pesticides used along the shore of lake Naivasha, Kenya. Am J Environ Eng 6:32–37Google Scholar
  46. Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444CrossRefGoogle Scholar
  47. Odukkathil G, Vasudevan N (2016) Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation. J Environ Manag 165:72–80CrossRefGoogle Scholar
  48. Palma G, Demanet R, Jorquera M, Mora ML, Briceño G, Violante V (2015) Effect of pH on sorption kinetic process of acidic herbicides in a volcanic soil. J Soil Sci Plant Nutr 15:549–560Google Scholar
  49. Pino N, Peñuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeter Biodegr 65:827–831CrossRefGoogle Scholar
  50. Pinto AP, Rodrigues SC, Caldeira AT, Teixeira DM (2016) Exploring the potential of novel biomixtures and Lentinula edodes fungus for the degradation of selected pesticides. Evaluation for use in biobed systems. Sci Total Environ 541:1372–1381CrossRefGoogle Scholar
  51. Pozo K, Llanos Y, Estellano VH, Cortés S, Jorquera H, Gerli L, Pozo K, Encina F, Palma R, Focardi S (2016) Occurrence of chlorpyrifos in the atmosphere of the Araucanía region in Chile using polyurethane foam-based passive air samplers. Atmos Pollut Res 7:706–710CrossRefGoogle Scholar
  52. Ruiz-Hidalgo K, Chin-Pampillo JS, Masís-Mora M, Carazo E, Rodríguez-Rodríguez CE (2014) Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: from mineralization to toxicity reduction. Process Biochem 49:2266–2271CrossRefGoogle Scholar
  53. Ruíz-Hidalgo K, Masís-Mora M, Barbieri E, Carazo-Rojas E, Rodríguez-Rodríguez CE (2016) Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices. Chemosphere 144:864–871CrossRefGoogle Scholar
  54. Saez JM, Aparicio JD, Amoroso MJ, Benimeli CS (2015) Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochem 50:1923–1933CrossRefGoogle Scholar
  55. SAG, Servicio Agrícola y Ganadero (2012) Informe de venta de plaguicidas de uso agrícola en Chile. Año 2012. http://www.sag.cl/sites/default/files/declaracion_de_venta_de_plaguicidas_ano_2012.pdf. Accessed 10 december 2016
  56. Saini A, Aggarwal NK, Sharma A, Yadav A (2015) Actynomicetes: a source of lignocellulolityc enzymes. Enzyme Res 2015:1–15CrossRefGoogle Scholar
  57. Schreiberová O, Hedbávná P, Cejková A, Jirku V, Masák J (2012) Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants. New Biotechnol 30:1CrossRefGoogle Scholar
  58. Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moxarella sp. with surface expressed organophosphorus hydrolase. Biotechnol Bioeng 76:318–324CrossRefGoogle Scholar
  59. Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863CrossRefGoogle Scholar
  60. Singh BK, Walker A, Wright DJ (2006) Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: influence of different environmental conditions. Soil Biol Biochem 38:2682–2693CrossRefGoogle Scholar
  61. Solomon KR, Williams WM, Mackay D, Purdy J, Giddings JM, Giesy JP (2014) Properties and uses of chlorpyrifos in the United States. In: Giesy JP, Solomon KR (ed) Ecological risk assessment for chlorpyrifos in terrestrial and aquatic systems in the United States, reviews of environmental contamination and toxicology 231. doi: 10.1007/978-3-319-03865-0_2
  62. Tabatabai MA, Bremmer JM (1969) Use of p-nitrophenylphosphate to assay of soil phosphatase activity. Soil Biol Biochem 1:301–307CrossRefGoogle Scholar
  63. Thengodkar RRM, Sivakami S (2010) Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21:637–644CrossRefGoogle Scholar
  64. Tortella GR, Mella-Herrera RA, Sousa DZ, Rubilar O, Acuña JJ, Briceño G, Diez MC (2013) Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. J Hazard Mater 260:459–467CrossRefGoogle Scholar
  65. Walker L (2016) Management of chlorpyrifos and diazinon discharges to the sacramento and feather rivers and the Sacramento-San Joaquin Delta: 2015 TMDL Compliance Monitoring Report. http://www.svwqc.org/wp-content/uploads/2016/05/chlorpyrifos_diazinon_TMDL_Report_2015.pdf. Accessed 28 December 2016
  66. Wang G, Liu Y (2016) Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon. J Biosci 41:359–366CrossRefGoogle Scholar
  67. Yañez-Ocampo G, Sánchez-Salinas, Ortiz-Hernández ML (2011) Removal of methyl parathion and tetrachlorvinphos by a bacterial consortium immobilized on tezontle-packed up-flow reactor. Biodegradation 22:1203–1213CrossRefGoogle Scholar
  68. Yu R, Liu Q, Liu J, Wang Q, Wang Y (2016) Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control 60:353–360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Gabriela Briceño
    • 1
    • 2
  • Karen Vergara
    • 1
  • Heidi Schalchli
    • 1
    • 3
  • Graciela Palma
    • 4
  • Gonzalo Tortella
    • 1
    • 2
  • María Soledad Fuentes
    • 5
  • María Cristina Diez
    • 1
    • 3
  1. 1.Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y CienciasUniversidad de La FronteraTemucoChile
  2. 2.Scientific and Technological Bioresource Nucleous (BIOREN-UFRO)Universidad de La FronteraTemucoChile
  3. 3.Departmento de Ingeniería QuímicaUniversidad de La FronteraTemucoChile
  4. 4.Departamento de Ciencias Químicas y Recursos NaturalesUniversidad de La FronteraTemucoChile
  5. 5.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)TucumánArgentina

Personalised recommendations