Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 7, pp 6095–6106 | Cite as

Pharmaceuticals released from senior residences: occurrence and risk evaluation

  • Silvia Lacorte
  • Silvia Luis
  • Cristian Gómez-Canela
  • Teresa Sala-Comorera
  • Audrey Courtier
  • Benoit Roig
  • Ana Maria Oliveira-Brett
  • Claire Joannis-Cassan
  • Juan Ignacio Aragonés
  • Lucia Poggio
  • Thierry Noguer
  • Luisa Lima
  • Carlos Barata
  • Carole Calas-Blanchard
Health and environmental risks associated with emerging pollutants and novel green processes
  • 711 Downloads

Abstract

One of the main pursuits, yet most difficult, in monitoring studies is to identify the sources of environmental pollution. In this study, we have identified health-care facilities from south European countries as an important source of pharmaceuticals in the environment. We have estimated that compounds consumed in by the elderly and released from effluents of senior residences can reach river waters at a concentration higher than 0.01 μg/L, which is the European Medicines Agency (EMA) threshold for risk evaluation of pharmaceuticals in surface waters. This study has been based on five health institutions in Portugal, Spain, and France, with 52 to 130 beds. We have compiled the pharmaceuticals dispensed on a daily base and calculated the consumption rates. From 54.9 to 1801 g of pharmaceuticals are consumed daily, with laxatives, analgesics, antiepileptics, antibiotics, and antidiabetic agents being the main drug families administered. According to excretion rates, dilution in the sewerage system, and elimination in wastewater treatment plants, macrogol, metformin, paracetamol, acetylcysteine, amoxicillin, and gabapentin, among others, are expected to reach river waters. Finally, we discuss the risk management actions related to the discharge of pharmaceuticals from senior residences to surface waters.

Keywords

Health care institutions Pharmaceuticals Predicted environmental concentrations Risk management 

Notes

Acknowledgements

This study has been financed by the SUDOE program with the project Innovec’EAU (2016-2019)/Project SOE1/P1/F0173 Interreg Sudoe funded by FEDER (http://innovec-eau.univ-perp.fr). We would like to acknowledge the associated partners of the project: Syndicat National des Établissements et Résidences Privés pour Personnes Âgées (SYNERPA), Jordi Cayetano and Marc Antoni Rovira from Sant Joan de Deu (SJD), Cinta Pascual and Arnald Pannocchia from Llars d’Avis de Catalunya (L’Onada), and Marisa Cristino, Filomena Gerardo, and Sónia Pereira da Silva from Santa Casa da Misericórdia de Lisboa (SCML). We would also like to thank the personnel from the elderly who are acknowledged for their assistance and guidance and for providing consumption data of pharmaceuticals. Silvia Sachetti, Emanuella Scudellaro, and Martina Lula, Erasmus students from the University Federico II in Naples, are gratefully thanked for compiling data and advice on the toxicity of pharmaceuticals.

Supplementary material

11356_2017_9755_MOESM1_ESM.docx (23 kb)
Table S1 Compounds consumed in the 5 health institutions from france, Spain and Portugal, the family and the ATC code. (DOCX 22 kb).
11356_2017_9755_MOESM2_ESM.docx (15 kb)
Table S2 (DOCX 15 kb).

References

  1. Al-Khazrajy OSA, Boxall ABA (2016) Risk-based prioritization of pharmaceuticals in the natural environment in Iraq. Environ Sci Pollut Res 23:15712–15726CrossRefGoogle Scholar
  2. Amiel ML, Husson MC (1994) The Theriaque database and information on side effects of drugs. Therapie 49:455–459Google Scholar
  3. Banjac Z, Ginebreda A, Kuzmanovic M, Marcé R, Nadal M, Riera JM, Barceló D (2015) Emission factor estimation of ca. 160 emerging organic microcontaminants by inverse modeling in a Mediterranean river basin (Llobregat, NE Spain). Sci Total Environ 520:241–252CrossRefGoogle Scholar
  4. Barnett J, Breakwell GM (2003) The social amplification of risk and the hazard sequence: the October 1995 oral contraceptive pill scare. Health Risk Soc 5:301–313CrossRefGoogle Scholar
  5. Besse JP, Kausch-Barreto C, Garric J (2008) Exposure assessment of pharmaceuticals and their metabolites in the aquatic environment: application to the French situation and preliminary prioritization. Hum Ecol Risk Assess 14:665–695CrossRefGoogle Scholar
  6. Booker V, Halsall C, Llewellyn N, Johnson A, Williams R (2014) Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci Total Environ 473-474:159–170CrossRefGoogle Scholar
  7. Bouder F (2011) Benefit/risk communication by the European Medicines Agency: a study of influential stakeholders’ expectations and attitudesGoogle Scholar
  8. Carlsson C, Johansson AK, Alvan G, Bergman K, Kühler T (2006) Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364:67–87CrossRefGoogle Scholar
  9. Chartier Y (2014): Safe management of wastes from health-care activities. World Health OrganizationGoogle Scholar
  10. Donnachie RL, Johnson AC, Sumpter JP (2016) A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals. Environ Toxicol Chem 35:1021–1027CrossRefGoogle Scholar
  11. EPA US (2013) Exposure assessment tools and models. EPI Suite v4.1. 2013: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
  12. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  13. Fick J, Lindberg RH, Tysklind M, Larsson DGJ (2010) Predicted critical environmental concentrations for 500 pharmaceuticals. Regul Toxicol Pharmacol 58:516–523CrossRefGoogle Scholar
  14. Franquet-Griell H, Gómez-Canela C, Ventura F, Lacorte S (2015) Predicting concentrations of cytostatic drugs in sewage effluents and surface waters of Catalonia (NE Spain). Environ Res 138:161–172CrossRefGoogle Scholar
  15. García-Santiago X, Franco-Uría A, Omil F, Lema JM (2016) Risk assessment of persistent pharmaceuticals in biosolids: dealing with uncertainty. J Hazard Mater 302:72–81CrossRefGoogle Scholar
  16. Gaspar R, Barnett J, Seibt B (2015) Crisis as seen by the individual: the norm deviation approach/La crisis vista por el individuo: el Enfoque de la Desviación de la Norma. Psyecology 6:103–135CrossRefGoogle Scholar
  17. Gómez-Canela C, Cortés-Francisco N, Oliva X, Pujol C, Ventura F, Lacorte S, Caixach J (2012) Occurrence of cyclophosphamide and epirubicin in wastewaters by direct injection analysis-liquid chromatography-high-resolution mass spectrometry. Environ Sci Pollut Res 19:3210–3218CrossRefGoogle Scholar
  18. Gómez-Canela C, Ventura F, Caixach J, Lacorte S (2014) Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 406:3801–3814CrossRefGoogle Scholar
  19. Herrmann M, Olsson O, Fiehn R, Herrel M, Kümmerer K (2015) The significance of different health institutions and their respective contributions of active pharmaceutical ingredients to wastewater. Environ Internat 85:61–76Google Scholar
  20. Kahan DM (2009) Nanotechnology and society: the evolution of risk perceptions. Nat Nanotechnol 4:705–706CrossRefGoogle Scholar
  21. Keller VDJ, Williams RJ, Lofthouse C, Johnson AC (2014) Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ Toxicol Chem 33:447–452CrossRefGoogle Scholar
  22. Kümmerer K, Al-Ahmad A (2010) Estimation of the cancer risk to humans resulting from the presence of cyclophosphamide and ifosfamide in surface water. Environ Sci Pollut Res 17:486–496CrossRefGoogle Scholar
  23. Langford KH, Thomas KV (2009) Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environ Int 35:766–770CrossRefGoogle Scholar
  24. Lichtenstein S, Slovic P (2006): The construction of preference. Cambridge University PressGoogle Scholar
  25. Naidu R, Espana VAA, Liu Y, Jit J (2016) Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere 154:350–357CrossRefGoogle Scholar
  26. Oldenkamp R, Huijbregts MAJ, Hollander A, Versporten A, Goossens H, Ragas AMJ (2013) Spatially explicit prioritization of human antibiotics and antineoplastics in Europe. Environ Int 51:13–26CrossRefGoogle Scholar
  27. Oosterhuis M, Sacher F, ter Laak TL (2013) Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data. Sci Total Environ 442:380–388CrossRefGoogle Scholar
  28. Ortiz de García S, Pinto Pinto G, García Encina P, Irusta Mata R (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465CrossRefGoogle Scholar
  29. Pidgeon N, Harthorn B, Satterfield T (2011) Nanotechnology risk perceptions and communication: emerging technologies, emerging challenges. Risk Anal 31:1694–1700CrossRefGoogle Scholar
  30. Rabiet M, Togola A, Brissaud F, Seidel JL, Budzinski H, Elbaz-Poulichet F (2006) Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment. Environ Sci Technol 40:5282–5288CrossRefGoogle Scholar
  31. Riva F, Zuccato E, Castiglioni S (2015) Prioritization and analysis of pharmaceuticals for human use contaminating the aquatic ecosystem in Italy. J Pharm Biomed Anal 106:71–78CrossRefGoogle Scholar
  32. Santos LHMLM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MCBSM (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461-462:302–316CrossRefGoogle Scholar
  33. Touraud E, Roig B, Sumpter JP, Coetsier C (2011) Drug residues and endocrine disruptors in drinking water: risk for humans? Int J Hyg Environ Health 214:437–441CrossRefGoogle Scholar
  34. van Leeuwen CJ, Vermeire TG (2007): Risk assessment of chemicals: an introduction. Springer Science & Business MediaGoogle Scholar
  35. van Nuijs ALN, Covaci A, Beyers H, Bervoets L, Blust R, Verpooten G, Neels H, Jorens PG (2015) Do concentrations of pharmaceuticals in sewage reflect prescription figures? Environ Sci Pollut Res 22:9110–9118CrossRefGoogle Scholar
  36. Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389:416–428CrossRefGoogle Scholar
  37. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155CrossRefGoogle Scholar
  38. WHO (2017) ATC/DDD Index 2017. https://www.whocc.no/atc_ddd_index/
  39. Zhang J, Chang VWC, Giannis A, Wang JY (2013) Removal of cytostatic drugs from aquatic environment: a review. Sci Total Environ 445-446:281–298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Silvia Lacorte
    • 1
  • Silvia Luis
    • 2
  • Cristian Gómez-Canela
    • 1
  • Teresa Sala-Comorera
    • 1
  • Audrey Courtier
    • 3
  • Benoit Roig
    • 3
  • Ana Maria Oliveira-Brett
    • 4
  • Claire Joannis-Cassan
    • 5
  • Juan Ignacio Aragonés
    • 6
  • Lucia Poggio
    • 6
  • Thierry Noguer
    • 7
  • Luisa Lima
    • 2
  • Carlos Barata
    • 1
  • Carole Calas-Blanchard
    • 7
  1. 1.Department of Environmental ChemistryIDAEA-CSICBarcelonaSpain
  2. 2.Centro de Investigação e Intervenção Social (CIS-IUL)Instituto Universitário de Lisboa (ISCTE-IUL)LisbonPortugal
  3. 3.EA7352 CHROMEUniversité de NimesNimesFrance
  4. 4.Department of ChemistryUniversity of CoimbraCoimbraPortugal
  5. 5.INPT; CNRS; LGC (Laboratoire de Génie Chimique)Université de ToulouseToulouseFrance
  6. 6.Facultad de PsicologíaUniversidad Complutense de MadridMadridSpain
  7. 7.Laboratoire Biocapteurs, Analyses, Environnement, BAE-LBBM USR 3579Université de Perpignan Via DomitiaPerpignan cedexFrance

Personalised recommendations