Skip to main content
Log in

A model of natural degradation of 17-α-ethinylestradiol in surface water and identification of degradation products by GC-MS

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Over the past decade, the environment has been polluted by a wide spectrum of exogenous chemicals and environmental analysis has become one of the most progressive parts of analytical research. The aim of this work was to determine the kinetics of natural degradation, and to identify the degradation products of the massively used estrogenic drug, 17-α-ethinylestradiol. The photodegradation, oxidation and thermostability conditions were selected according to ICH requirements for pharmaceutical stability testing. A simple 72-h photodegradation study in purified water exhibited significant first-order kinetics with the kinetic constant k = 0.0303 h−1, and degradation halftime 22.8 h. The basic halftime could be reduced to 17.1 h by the addition of sea salt, and increase in temperature. Monohydroxy, dihydroxy and dehydrogenated derivatives of ethinylestradiol with intact steroidal structure were identified as major degradation products resulting from simple photodegradation. The addition of an oxidative agent significantly accelerated the degradation rate; combined with higher temperature, the degradation halftime was reduced to 1.1 h with the first-order kinetic constant k = 0.632 h−1. TOC analysis showed a notable decrease of organic mass (18% in 3 days) during oxidation experiments, and confirmed the degradation of steroidal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahuja S, Scypinski S (2011) Handbook of modern pharmaceutical analysis, 2nd edn. Academic Press, London

    Google Scholar 

  • Andrew MN, O'Connor WA, Dunstan RH, MacFarlane GR (2010) Exposure to 17α-ethynylestradiol causes dose and temporally dependent changes in intersex, females and vitellogenin production in the Sydney rock oyster. Ecotoxicology 19:1440–1451

    Article  CAS  Google Scholar 

  • Aris AZ, Shamsuddin AS, Praveena SM (2014) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Environ Int 69:104–119

    Article  CAS  Google Scholar 

  • Cédat B, Brauer C, Métivier H, Dumont N, Tutundjan R (2016) Are UV photolysis and UV/H2O2 processes efficient to treat estrogens in water? Chem Biol Asses Pilot Scale Water Res 100:357–366

    Google Scholar 

  • Chen JL, Ravindran S, Swift S, Wright LJ, Singhal N (2012) Catalytic oxidative degradation of 17α-ethinylestradiol by FeIII-TAML/H2O2: estrogenicities of the products of partial, and extensive oxidation. Water Res 46:6309–6318

    Article  CAS  Google Scholar 

  • Chowdhury RR, Charpentier PA, Ray MB (2011) Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: kinetics and influencing water parameters. J Photochem Photobiol A 219:67–75

    Article  CAS  Google Scholar 

  • Darroch JE (2013) Trends in contraceptive use. Contraception 87:259–263

    Article  Google Scholar 

  • Forrez I, Carballa M, Noppe H, Brabander HD, Boon N, Verstraete W (2009) Influence of manganese and ammonium oxidation on the removal of 17α-ethinylestradiol (EE2). Water Res 43:77–86

    Article  CAS  Google Scholar 

  • Frontistis Z, Kouramanos M, Moraitis S, Chatzisymeon E, Hapeshi E, Fatta-Kassinos D, Xekoukoulotakis NP, Mantzavinos D (2015) UV and simulated solar photodegradation of 17α-ethynylestradiol in secondary-treated wastewater by hydrogen peroxide and iron addition. Catal Today 252:84–92

    Article  CAS  Google Scholar 

  • Hampl R, Kubatova H, Starka L (2016) Steroids and endocrine disruptors—history, recent state of art and open questions. J Steroid Biochem Mol Biol 155(B):217–223

    Article  CAS  Google Scholar 

  • Hintemann T, Heinz CS, Schöler F, Schneider RJ (2006) Field study using two immunoassays for the determination of estradiol and ethinylestradiol in the aquatic environment. Water Res 40:2287–2294

    Article  CAS  Google Scholar 

  • Huanga B, Wanga B, Rena D, Jina W, Liua J, Pengb J, Pana X (2013) Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment. China Environ Int 59:262–273

    Article  Google Scholar 

  • Huber MM, Ternes TA, von Gunten U (2004) Removal of estrogenic activity and formation of oxidation products during ozonation of 17alpha-ethinylestradiol. Environ Sci Technol 38:5177–5186

    Article  CAS  Google Scholar 

  • ICH Q1A (R2) (2003) Stability Testing of New Drug Substances and Products

  • ICH Q1B (1996) Stability Testing: Photostability Testing of New Drug Substances and Products

  • Larcher S, Yargeau V (2013) Biodegradation of 17α-ethinylestradiol by heterotrophic bacteria. Environ Pollut 173:17–22

    Article  CAS  Google Scholar 

  • Larcher S, Delbes G, Robaire B, Yargeau V (2012) Degradation of 17α-ethinylestradiol by ozonation—identification of the by-products and assasement of their estrogenicity and toxicity. Environ Int 39:66–72

    Article  CAS  Google Scholar 

  • Larsson DGJ, Adolfsson-Erici M, Parkkonen J, Pettersson M, Berg AH, Olsson P-E, Forlin L (1999) Ethinyloestradiol—an undesired fish contraceptive? Aquat Toxicol 45:91–97

    Article  CAS  Google Scholar 

  • Leech DM, Snyder MT, Wetzel RG (2009) Natural organic matter and sunlight accelerate the degradation of 17β-estradiol in water. Sci Total Environ 407:2087–2092

    Article  CAS  Google Scholar 

  • Li S, Sun W (2014) Photocatalytic degradation of 17α-ethinylestradiol in mono- and binary systems of fulvic acid and Fe(III): application of fluorescence excitation/emission matrixes. Chem Eng J 237:101–108

    Article  CAS  Google Scholar 

  • Lin AY, Reinhard M (2005) Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environ Toxicol Chem 24:1303–1309

    Article  CAS  Google Scholar 

  • Liu XL, Wu F, Deng NS (2003) Photodegradation of 17α-ethynylestradiol in aqueous solution exposed to a high-pressure mercury lamp (250 W). Environ Pollut 126:393–398

    Article  CAS  Google Scholar 

  • Ma X, Zhang C, Deng J, Song Y, Li Q, Guo Y, Li C (2015) Simultaneous degradation of estrone, 17β-estradiol and 17α ethinyl estradiol in an aqueous UV/H2O2 system. Int J Environ Res Public Health 12:12016–12029

    Article  CAS  Google Scholar 

  • Manickum T, John W (2014) Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). Sci Total Environ 20(468–469):584–597

    Article  Google Scholar 

  • Mazellier P, Méité L, Laat D (2008) Photodegradation of the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in dilute aqueous solution. Chemosphere 73:1216–1223

    Article  CAS  Google Scholar 

  • Nasuhoglu D, Berk D, Yargeau V (2012) Photocatalytic removal of 17α-ethinylestradiol (EE2) and levonorgestrel (LNG) from contraceptive pill manufacturing plant wastewater under UVC radiation. Chem Eng J 185-186:52–60

    Article  CAS  Google Scholar 

  • Notch EG, Miniutti DM, Mayer GD (2007) 17α-Ethinylestradiol decreases expression of multiple hepatic nucleotide excision repair genes in zebrafish (Danio rerio). Aquat Toxicol 84:301–309

    Article  CAS  Google Scholar 

  • Pan Z, Stemmler EA, Cho HJ, Fan W, LeBlanc LA, Patterson HH, Amirbahman A (2014) Photocatalytic degradation of 17α-ethinylestradiol (EE2) in the presence of TiO2-doped zeolite. J Hazard Mater 279:17–25

    Article  CAS  Google Scholar 

  • Pickering AD, Sumpter JP (2003) Comprehending endocrine disrupters in aquatic environments. Environ Sci Technol 37:331–336

    Article  Google Scholar 

  • Puma GL, Puddu V, Tsang HK, Gora A, Toepfer B (2010) Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: photon absorption, quantum yields and rate constants independent of photon absorption. Appl Catal B-Environ 99:388–397

    Article  Google Scholar 

  • Silva CP, Otero M, Esteves V (2012a) Processes of the elimination of estrogenic steroid hormones from water: a review. Environ Pollut 165:38–58

    Article  CAS  Google Scholar 

  • Silva CP, Rocha MJ, Cruzeiro C, Malhão F, Reis B, Urbatzka R (2012b) Testing the effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens as found in the Douro River (Portugal) on the maturation of fish gonads—a stereological study using the zebrafish (Danio rerio) as model. Aquat Toxicol 124–125:1–10

    Article  Google Scholar 

  • Silva CP, Lima DL, Otero M, Esteves VI (2016) Photosensitized degradation of 17 beta-estradiol and 17 alpha-ethinylestradiol: role of humic substances fractions. J Environ Qual 45:693–700

    Article  CAS  Google Scholar 

  • Sornalingam K, McDonagh A, Zhou JI (2016) Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: progress and future challenges. Sci Total Environ 550:209–224

    Article  CAS  Google Scholar 

  • Ternesa TA, Stumpfa M, Muellera J, Haberera K, Wilkena R-D, Servosb M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90

    Article  Google Scholar 

  • Vallejo-Rodríguez R, Murillo-Tovar M, Navarro-Laboulais J, León-Becerril E, López-López A (2014) Assessment of the kinetics of oxidation of some steroids and pharmaceutical compounds in water using ozone. J Environ Chem Eng 2:316–323

    Article  Google Scholar 

  • Vosges M, Braguer J-C, Combarnous Y (2008) Long-term exposure of male rats to low- dose ethinylestradiol (EE2) in drinking water: effects on ponderal growth and on litter size of progeny. Reprod Toxicol 25:161–168

    Article  CAS  Google Scholar 

  • Zhang Y, Zhou JL, Ning B (2007) Photodegradation of estrone and 17β-estradiol in water. Water Res 41:19–26

    Article  CAS  Google Scholar 

  • Zuo Y, Zhang K, Deng Y (2006) Occurence and photochemical degradation of 17α-ethinylestradiol in Acushnet River Estuary. Chemosphere 63:1583–1590

    Article  CAS  Google Scholar 

  • Zuo Y, Zhang K, Zhou S (2013) Determination of estrogenic steroids and microbial and photochemical degradation of 17α-ethinylestradiol (EE2) in lake surface water, a case study. Environ Sci Process Impacts 15:1529–1535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Charles University in Prague, project SVV 260 401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Nejedly.

Additional information

Responsible editor: Roland Kallenborn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejedly, T., Klimes, J. A model of natural degradation of 17-α-ethinylestradiol in surface water and identification of degradation products by GC-MS. Environ Sci Pollut Res 24, 23196–23206 (2017). https://doi.org/10.1007/s11356-017-9743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9743-5

Keywords

Navigation