Environmental Science and Pollution Research

, Volume 25, Issue 22, pp 21272–21285 | Cite as

Monitoring and modeling 4-chlorophenol biodegradation kinetics by phenol-acclimated activated sludge by using open respirometry

  • Cintia C. Lobo
  • Nora C. Bertola
  • Edgardo M. Contreras
  • Noemí E. Zaritzky
Advances in Environmental Biotechnology and Engineering 2016


The aim of this study was to analyze the mechanisms, stoichiometry, and stability of 4-chlorophenol (4CP) biodegradation kinetics by phenol-acclimated activated sludge using open respirometry. While the removal of 4CP was higher than 98%, the removal of chemical oxygen demand (COD) ranged between 69 and 79% due to the accumulation of an intermediate metabolite. The value obtained from respirometric profiles for the stoichiometric ratio of O2 to 4CP (YO2/4CP) was 1.95 ± 0.04 mol of oxygen consumed per mol of 4CP removed. This YO2/4CP value reflected the action of the oxygenases responsible for the first steps of the aerobic oxidation of 4CP. The 4CP degradation activity decreased noticeably when successive pulses of 4CP were added to the respirometer. A mathematical model was developed to represent the aerobic biodegradation of 4CP. The fitted model adequately predicted the oxygen consumption rate, total phenols, and soluble COD concentrations as a function of time. The results presented could help to predict the dynamic of biodegradation of chlorophenols in a biological wastewater treatment system.


Acclimated activated sludge 4-Chlorophenol Respirometry Biodegradation Oxidation coefficient Mathematical model Kinetics 



This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), by Universidad Nacional de la Plata (UNLP), and by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina.

Supplementary material

11356_2017_9735_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1064 kb)


  1. Aktas O (2012) Effect of S0/X0 ratio and acclimation on respirometry of activated sludge in the cometabolic biodegradation of phenolic componuds. Bioresour Technol 111:98–104. doi: 10.1016/j.biortech.2012.02.027 CrossRefGoogle Scholar
  2. Arora PK, Bae H (2014) Integration of bioinformatics to biodegradation. Biological Procedures Online 16:8–8. doi: 10.1186/1480-9222-16-8 CrossRefGoogle Scholar
  3. Bali U, Şengül F (2002) Performance of a fed-batch reactor treating a wastewater containing 4-chlorophenol. Process Biochem 37:1317–1323. doi: 10.1016/S0032-9592(02)00022-5 CrossRefGoogle Scholar
  4. Beltrame P, Beltrame PL, Carniti P (1984) Inhibiting action of chloro- and nitro-phenols on biodegradation of phenol: a structure-toxicity relationship. Chemosphere 13:3–9. doi: 10.1016/0045-6535(84)90003-1 CrossRefGoogle Scholar
  5. Beltrán FJ (2004) Ozone reaction kinetics for water and wastewater systems. Lewis Publishers. CRC Press Co., Boca Raton, FloridaGoogle Scholar
  6. Buitrón G, Schoeb M-E, Moreno J (2003) Automated sequencing batch bioreactor under extreme peaks of 4-chlorophenol. Water Sci Technol 47:175–181CrossRefGoogle Scholar
  7. Çatalkaya EÇ, Bali U, Şengül F (2003) Photochemical degradation and mineralization of 4- chlorophenol. Environ Sci Pollut R 10:113–120. doi: 10.1065/espr2002.10.135 CrossRefGoogle Scholar
  8. Farrell A, Quilty B (1999) Degradation of mono-chlorophenols by a mixed microbial community via a meta-cleavage pathway. Biodegradation 10:353–362. doi: 10.1023/a:1008323811433 CrossRefGoogle Scholar
  9. Ferro Orozco AM, Contreras EM, Zaritzky NE (2013) Biodegradation of bisphenol-a (BPA) in activated sludge batch reactors: analysis of the acclimation process. International Biodeterioration & Biodegradation 85:392–399. doi: 10.1016/j.ibiod.2013.09.005 CrossRefGoogle Scholar
  10. Ferro Orozco AM, Contreras EM, Zaritzky NE (2015) Simultaneous biodegradation of bisphenol a and a biogenic substrate in semi-continuous activated sludge reactors. Biodegradation 26:183–195. doi: 10.1007/s10532-015-9726-5 CrossRefGoogle Scholar
  11. Ferro Orozco AM, Contreras EM, Zaritzky NE (2016a) Biodegradation of bisphenol a and its metabolic intermediates by activated sludge: stoichiometry and kinetics analysis. International Biodeterioration & Biodegradation 106:1–9. doi: 10.1016/j.ibiod.2015.10.003 CrossRefGoogle Scholar
  12. Ferro Orozco AM, Contreras EM, Zaritzky NE (2016b) Monitoring the biodegradability of bisphenol A and its metabolic intermediates by manometric respirometry tests. Biodegradation 27(4):209–221. doi: 10.1007/s10532-016-9767-4 CrossRefGoogle Scholar
  13. Field JA, Sierra-Alvarez R (2007) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7:211–241. doi: 10.1007/s11157-007-9124-5 CrossRefGoogle Scholar
  14. Frey PA, Hegeman AD (2007) Enzymatic reaction mechanisms. Oxford University Press, Inc. new YorkGoogle Scholar
  15. Gao J, Ellis LBM, Wackett LP (2010) The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38(Database issue):D488–D491. doi: 10.1093/nar/gkp771
  16. Greenberg AE, Clesceri LS, Eaton AD (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association (APHA), Washington DCGoogle Scholar
  17. Grén I, Hupert-Kocurek K, Osiecka M, Guzik U, Wojcieszyńska D (2012) Toxicity of 4-chlorophenol under cometabolic conditions depending on the bacterial cell wall structure? Architecture, civil engineering. Environment (ACEE) 3:101–108Google Scholar
  18. Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46(6):797–807. doi: 10.1016/S0045-6535(01)00182-5 CrossRefGoogle Scholar
  19. Jiang Y, Ren N, Cai X, Wu D, Qiao L, Lin S (2008) Biodegradation of phenol and 4-Chlorophenol by the mutant strain CTM 2. Chin J Chem Eng 16:796–800. doi: 10.1016/S1004-9541(08)60158-5 CrossRefGoogle Scholar
  20. Kargi F, Konya I (2006) COD, para-chlorophenol and toxicity removal from para-chlorophenol containing synthetic wastewater in an activated sludge unit. J Hazard Mater 132:226–231. doi: 10.1016/j.jhazmat.2005.09.040 CrossRefGoogle Scholar
  21. Kim JH, Oh KK, Lee ST, Kim S-W, Hong SI (2002) Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochem 37:1367–1373. doi: 10.1016/S0032-9592(02)00007-9 CrossRefGoogle Scholar
  22. Konya I, Eker S, Kargi F (2007) Mathematical modelling of 4-chlorophenol inhibition on COD and 4-chlorophenol removals in an activated sludge unit. J Hazard Mater 143(1–2):233–239. doi: 10.1016/j.jhazmat.2006.09.015 CrossRefGoogle Scholar
  23. Lim JW, Tan JZ, Seng CE (2013) Performance of phenol-acclimated activated sludge in the presence of various phenolic compounds. App Water Sci 3:515–525. doi: 10.1007/s13201-013-0099-9 CrossRefGoogle Scholar
  24. Liu D, Pacepavicius G (1990) A systematic study of the aerobic and anaerobic biodegradation of 18 chlorophenols and 3 cresols. Toxicity Assessment 5:367–387. doi: 10.1002/tox.2540050405 CrossRefGoogle Scholar
  25. Lobo CC, Bertola NC, Contreras EM (2014) Error propagation in open respirometric assays. Brazilian J Chem Eng 31:303–312. doi: 10.1590/0104-6632.20140312s00002659 CrossRefGoogle Scholar
  26. Lobo CC, Bertola NC, Contreras EM (2013) Stoichiometry and kinetic of the aerobic oxidation of phenolic compounds by activated sludge. Bioresour Technol 136:58–65. doi: 10.1016/j.biortech.2013.02.079 CrossRefGoogle Scholar
  27. Lobo CC, Bertola NC, Contreras EM (2016) Inhibition kinetics during the oxidation of binary mixtures of phenol with catechol, resorcinol and hydroquinone by phenol acclimated activated sludge. Braz J Chem Eng 33(1):59–71. doi: 10.1590/0104-6632.20160331s20150173 CrossRefGoogle Scholar
  28. Mendes P (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems computer applications in the biosciences: CABIOS 9:563-571Google Scholar
  29. Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–888CrossRefGoogle Scholar
  30. Monsalvo VM, Mohedano AF, Casas JA, Rodríguez JJ (2009) Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresour Technol 100:4572–4578. doi: 10.1016/j.biortech.2009.04.044 CrossRefGoogle Scholar
  31. Moreno-Andrade I, Buitrón G (2004) Variation of the microbial activity during the acclimation phase of SBR system degrading 4-chlorophenol. Water Sci Technol 50:251–258CrossRefGoogle Scholar
  32. Nadavala SK, Swayampakula K, Boddu VM, Abburi K (2009) Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. J Hazard Mater 162:482–489. doi: 10.1016/j.jhazmat.2008.05.070 CrossRefGoogle Scholar
  33. Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544CrossRefGoogle Scholar
  34. Nuhoglu A, Yalcin B (2005) Modelling of phenol removal in a batch reactor. Process Biochem 40:1233–1239. doi: 10.1016/j.procbio.2004.04.003 CrossRefGoogle Scholar
  35. Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83:1297–1306. doi: 10.1016/j.chemosphere.2011.04.009 CrossRefGoogle Scholar
  36. Orhon D, Cokgor EU, Insel G, Karahan O, Katipoglu T (2009) Validity of Monod kinetics at different sludge ages - peptone biodegradation under aerobic conditions. Bioresour Technol 100:5678–5686. doi: 10.1016/j.biortech.2009.06.046 CrossRefGoogle Scholar
  37. Paca J, Kosteckova A, Pacova L, Prell A, Halecky M, Paca J Jr, Stiborova M, Kozliak E, Soccol CR (2010) Respirometry kinetics of phenol oxidation by Comamonas testosteroni Pb50 under various conditions of nutritional stress. Braz Arch Biol Technol 53(6):1519–1528. doi: 10.1590/S1516-89132010000600030 CrossRefGoogle Scholar
  38. Ricco G, Tomei MC, Ramadori R, Laera G (2004) Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox®. Water Res 38:2103–2110. doi: 10.1016/j.watres.2004.01.020 CrossRefGoogle Scholar
  39. Ros M (1993) Respirometry of Activated Sludge. Technomic Publishing Co., Inc. Basilea, SwitzerlandGoogle Scholar
  40. Rueda-Márquez JJ, Pintado-Herrera MG, Martín-Díaz ML, Acevedo-Merino A, Manzano MA (2015) Combined AOPs for potential wastewater reuse or safe discharge based on multi-barrier treatment (microfiltration-H2O2/UV-catalytic wet peroxide oxidation). Chem Eng J 270:80–90. doi: 10.1016/j.cej.2015.02.011 CrossRefGoogle Scholar
  41. Sahinkaya E, Dilek FB (2005) Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge—evaluation of biokinetic coefficients. Environ Res 99:243–252. doi: 10.1016/j.envres.2004.11.005 CrossRefGoogle Scholar
  42. Sanchis S, Polo A, Tobajas M, Rodriguez J, Mohedano A (2014) Strategies to evaluate biodegradability: application to chlorinated herbicides. Environ. Sci. Pollut. R 21(16):9445–9452. doi: 10.1007/s11356-013-2130-y CrossRefGoogle Scholar
  43. Uysal A, Turkman A (2007) Biodegradation of 4-CP in an activated sludge reactor: effects of biosurfactant and the sludge age. J Hazar Mater 148:151–157. doi: 10.1016/j.jhazmat.2007.02.020 CrossRefGoogle Scholar
  44. Verweij W. Equilibria and constants in CHEAQS: selection criteria, sources and assumptions. Version 8 (April 2009). From:
  45. Wang Q, Li Y, Li J, Wang Y, Wang C, Wang P (2015) Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Environ. Sci. Pollut. R 22(1):565–573. doi: 10.1007/s11356-014-3374-x CrossRefGoogle Scholar
  46. Westmeier F, Rehm HJ (1987) Degradation of 4-chlorophenol in municipal wastewater by adsorptiv immobilized Aicaligenes sp. A 7-2. Appl Environ Microbiol 26:78–83. doi: 10.1007/bf00282152 CrossRefGoogle Scholar
  47. Ye FX, Shen DS (2004) Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere 54:1573–1580. doi: 10.1016/j.chemosphere.2003.08.019 CrossRefGoogle Scholar
  48. Zhang L, Bandy B, Davison AJ (1996) Effects of metals, ligands and antioxidants on the reaction of oxygen with 1, 2, 4-benzenetriol. Free Radic Biol Med 20:495–505CrossRefGoogle Scholar
  49. Zhao J, Chen X, Bao L, Bao Z, He Y, Zhang Y, Li J (2016) Correlation between microbial diversity and toxicity of sludge treating synthetic wastewater containing 4-chlorophenol in sequencing batch reactors. Chemosphere 153:138–145. doi: 10.1016/j.chemosphere.2016.01.086 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Cintia C. Lobo
    • 1
  • Nora C. Bertola
    • 1
  • Edgardo M. Contreras
    • 2
  • Noemí E. Zaritzky
    • 1
    • 3
  1. 1.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, Facultad de Ciencias, ExactasUNLPLa PlataArgentina
  2. 2.Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET, Facultad de IngenieríaMar del PlataArgentina
  3. 3.Facultad de IngenieríaUNLPLa PlataArgentina

Personalised recommendations