Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 24, pp 19723–19732 | Cite as

Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China

  • He Wang
  • Hong Liang
  • Da-Wen GaoEmail author
Research Article

Abstract

This study looks at the pollution status of six priority control phthalate esters (PAEs) under different cultivation of agricultural soils in the Sanjiang Plain, northeast China. Results show the total concentration of PAEs ranged from 162.9 to 946.9 μg kg−1 with an average value of 369.5 μg kg−1. PAE concentrations in three types of cultivated soils exhibited decreasing order paddy field (532.1 ± 198.1 μg kg−1) > vegetable field (308.2 ± 87.5 μg kg−1) > bean field (268.2 ± 48.3 μg kg−1). Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the most abundant PAEs congeners. Compared with previous studies, agricultural soils in the Sanjiang Plain showed relatively low contamination levels. Anthropogenic activities such as cultivation practices and industrial emissions were associated with the distribution pattern of PAEs. Furthermore, human health risks of PAEs were estimated and the non-cancer risk shown negligible but carcinogenic risk of DEHP exceeded the threshold limits value. PAE contaminants originated from cultivation practices and intense anthropogenic activities result in placing the agricultural soils under a potential risk to human health and also to ecosystems in the Sanjiang Plain. Therefore, the contamination status of PAEs in agricultural soil and potential impacts on human health should attract considerable attention.

Keywords

Phthalate ester Agricultural soils Risk assessment Sanjiang Plain Northeast China 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31470543).

References

  1. Bergé A, Cladière M, Gasperi J, Coursimault A, Tassin B, Moilleron R (2013) Meta-analysis of environmental contamination by phthalates. Environ Sci Pollut Res 20:8057–8076. doi: 10.1007/s11356-013-1982-5 CrossRefGoogle Scholar
  2. Botton J, Philippat C, Calafat AM, Caries S, Charles MA, Slama R, gro Em-ccs (2016) Phthalate pregnancy exposure and male offspring growth from the intra-uterine period to five years of age. Environ Res 151:601–609. doi: 10.1016/j.envres.2016.08.033 CrossRefGoogle Scholar
  3. Bui TT, Giovanoulis G, Cousins AP, Magnér J, Cousins IT, de Wit CA (2016) Human exposure, hazard and risk of alternative plasticizers to phthalate esters. Sci Total Environ 541:451–467CrossRefGoogle Scholar
  4. Cai Q, Mo C, Wu Q, Katsoyiannis A, Zeng Q (2008) The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: a review. Sci Total Environ 389:209–224CrossRefGoogle Scholar
  5. Cai Q, Mo C, Wu Q, Zeng Q, Katsoyiannis A (2007) Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China. Chemosphere 68:1751–1762CrossRefGoogle Scholar
  6. Cai Q et al (2015) Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.) Ecotoxicol Environ Saf 116:50–58CrossRefGoogle Scholar
  7. Chai C, Cheng HZ, Ge W, Ma D, Shi Y (2014) Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China. PLoS One 9:e95701. doi: 10.1371/journal.pone.0095701 CrossRefGoogle Scholar
  8. Chen H et al (2013) Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate. Glob Chang Biol 19:19–32. doi: 10.1111/gcb.12034 CrossRefGoogle Scholar
  9. Chen L, Zhao Y, Li L, Chen B, Zhang Y (2012) Exposure assessment of phthalates in non-occupational populations in China. Sci Total Environ 427–428:60–69CrossRefGoogle Scholar
  10. Cheng XM, Ma LL, Xu DD, Cheng HX, Yang GS, Luo M (2015) Mapping of phthalate esters in suburban surface and deep soils around a metropolis-Beijing, China. J Geochem Explor 155:56–61CrossRefGoogle Scholar
  11. China National Environmental Protection Agency, China (2008) Environmental Quality Standard for Soils vol GB-15618-2008Google Scholar
  12. Dong JW et al (2015) Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms. Remote Sens Environ 160:99–113. doi: 10.1016/j.rse.2015.01.004 CrossRefGoogle Scholar
  13. Fromme H et al (2007) Intake of phthalates and di(2-ethylhexyl)adipate: results of the integrated exposure assessment survey based on duplicate diet samples and biomonitoring data. Environ Int 33:1012–1020CrossRefGoogle Scholar
  14. Fu X, Du Q (2011) Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses. J Agric Food Chem 59:11585–11588. doi: 10.1021/jf203502e CrossRefGoogle Scholar
  15. Gao D, Li Z, Wen Z, Ren N (2014) Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 95:24–32. doi: 10.1016/j.chemosphere.2013.08.009 CrossRefGoogle Scholar
  16. Gao DW, Wen ZD (2016) Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 541:986–1001CrossRefGoogle Scholar
  17. Gibson R, Wang M-J, Padgett E, Beck AJ (2005) Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids. Chemosphere 61:1336–1344CrossRefGoogle Scholar
  18. Hotchkiss AK et al (2008) Fifteen years after “wingspread”—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 105:235–259. doi: 10.1093/toxsci/kfn030 CrossRefGoogle Scholar
  19. Huang JY, Song CC, Nkrumah PN (2013) Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain. Environ Monit Assess 185:5861–5871. doi: 10.1007/s10661-012-2990-5 CrossRefGoogle Scholar
  20. Ji YQ et al (2014) A comprehensive assessment of human exposure to phthalates from environmental media and food in Tianjin, China. J Hazard Mater 279:133–140. doi: 10.1016/j.jhazmat.2014.06.055 CrossRefGoogle Scholar
  21. Kong SF et al (2012) Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Environ Pollut 170:161–168CrossRefGoogle Scholar
  22. Kong SF et al (2013) Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China. Atmos Environ 74:199–208. doi: 10.1016/j.atmosenv.2013.02.053 CrossRefGoogle Scholar
  23. Li C, Chen JY, Wang JH, Han P, Luan YX, Ma XP, Lu AX (2016) Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: concentrations, sources, and risk assessment. Sci Total Environ 568:1037–1043. doi: 10.1016/j.scitotenv.2016.06.077 CrossRefGoogle Scholar
  24. Li JJ et al (2013) Abundance, composition and source of atmospheric PM2.5 at a remote site in the Tibetan Plateau, China. Tellus Ser B-Chem Phys Meteorol 65:16. doi: 10.3402/tellusb.v65i0.20281 Google Scholar
  25. Liu H, Liang HC, Liang Y, Zhang D, Wang C, Cai HS, Shvartsev SL (2010) Distribution of phthalate esters in alluvial sediment: a case study at JiangHan Plain, Central China. Chemosphere 78:382–388. doi: 10.1016/j.chemosphere.2009.11.009 CrossRefGoogle Scholar
  26. Marttinen SK, Kettunen RH, Rintala JA (2003) Occurrence and removal of organic pollutants in sewages and landfill leachates. Sci Total Environ 301:1–12. doi: 10.1016/s0048-9697(02)00302-9 CrossRefGoogle Scholar
  27. Meng XZ et al (2014) Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soil. Sci Total Environ 476-477:242–249. doi: 10.1016/j.scitotenv.2014.01.007 CrossRefGoogle Scholar
  28. Mo CH, Cai QY, Li YH, Zeng QY (2008) Occurrence of priority organic pollutants in the fertilizers, China. J Hazard Mater 152:1208–1213. doi: 10.1016/j.jhazmat.2007.07.105 CrossRefGoogle Scholar
  29. Net S, Sempéré R, Delmont A, Paluselli A, Ouddane B (2015) Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol 49:4019–4035. doi: 10.1021/es505233b CrossRefGoogle Scholar
  30. Niu L, Xu Y, Xu C, Yun LX, Liu WP (2014) Status of phthalate esters contamination in agricultural soils across China and associated health risks. Environ Pollut 195:16–23CrossRefGoogle Scholar
  31. Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749CrossRefGoogle Scholar
  32. Sun B, Zhang LX, Yang LZ, Zhang FS, Norse D, Zhu ZL (2012) Agricultural non-point source pollution in China: causes and mitigation measures. Ambio 41:370–379. doi: 10.1007/s13280-012-0249-6 CrossRefGoogle Scholar
  33. Sun J et al (2016) Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Sci Total Environ 544:670–676CrossRefGoogle Scholar
  34. Tan WB et al (2016) Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems. Sci Rep 6:15. doi: 10.1038/srep31987 CrossRefGoogle Scholar
  35. Teng Y, Li J, Wu J, Lu S, Wang Y, Chen H (2015) Environmental distribution and associated human health risk due to trace elements and organic compounds in soil in Jiangxi Province, China. Ecotoxicol Environ Saf 122:406–416CrossRefGoogle Scholar
  36. Tsai YI, Sopajaree K, Kuo SC, Yu SP (2015) Potential PM2.5 impacts of festival-related burning and other inputs on air quality in an urban area of southern Taiwan. Sci Total Environ 527:65–79. doi: 10.1016/j.scitotenv.2015.04.021 CrossRefGoogle Scholar
  37. US EPA (United States Environmental Protection Agency) (2013) Washington DC. Mid Atlantic Risk Assessment. Regional Screening Level (RSL) Summary TableGoogle Scholar
  38. Vikelsøe J, Thomsen M, Carlsen L (2002) Phthalates and nonylphenols in profiles of differently dressed soils. Sci Total Environ 296:105–116CrossRefGoogle Scholar
  39. Wang J, Chen GC, Christie P, Zhang MY, Luo YM, Teng Y (2015a) Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Sci Total Environ 523:129–137. doi: 10.1016/j.scitotenv.2015.02.101 CrossRefGoogle Scholar
  40. Wang J, Luo YM, Teng Y, Ma WT, Christie P, Li ZG (2013a) Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ Pollut 180:265–273CrossRefGoogle Scholar
  41. Wang L et al (2016a) Effect of di-n-butyl phthalate (DBP) on the fruit quality of cucumber and the health risk. Environ Sci Pollut Res 23:24298–24304. doi: 10.1007/s11356-016-7658-1 CrossRefGoogle Scholar
  42. Wang LJ, Xu X, Lu XW (2015b) Phthalic acid esters (PAEs) in vegetable soil from the suburbs of Xianyang City, Northwest China. Environ Earth Sci 74:1487–1496. doi: 10.1007/s12665-015-4141-0 CrossRefGoogle Scholar
  43. Wang LL, Song CC, Guo YD (2016b) The spatiotemporal distribution of dissolved carbon in the main stems and their tributaries along the lower reaches of Heilongjiang River Basin, Northeast China. Environ Sci Pollut Res 23:206–219. doi: 10.1007/s11356-015-5528-x CrossRefGoogle Scholar
  44. Wang XH, Zhang GX, Xu YJ, Sun GZ (2015c) Identifying the regional-scale groundwater-surface water interaction on the Sanjiang Plain, Northeast China. Environ Sci Pollut Res 22:16951–16961. doi: 10.1007/s11356-015-4914-8 CrossRefGoogle Scholar
  45. Wang XL, Lin QX, Wang J, Lu XG, Wang GP (2013b) Effect of wetland reclamation and tillage conversion on accumulation and distribution of phthalate esters residues in soils. Ecol Eng 51:10–15. doi: 10.1016/j.ecoleng.2012.12.079 CrossRefGoogle Scholar
  46. Xie ZY, Ebinghaus R, Temme C, Lohmann R, Caba A, Ruck W (2007) Occurrence and air-sea exchange of phthalates in the Arctic. Environ Sci Technol 41:4555–4560. doi: 10.1021/es0630240 CrossRefGoogle Scholar
  47. Xu G, Li FS, Wang QH (2008) Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Sci Total Environ 393:333–340CrossRefGoogle Scholar
  48. Yang HJ, Xie WJ, Liu Q, Liu JT, Yu HW, Lu ZH (2013) Distribution of phthalate esters in topsoil: a case study in the Yellow River Delta, China. Environ Monit Assess 185:8489–8500. doi: 10.1007/s10661-013-3190-7 CrossRefGoogle Scholar
  49. Zeng F et al (2009) Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China. J Hazard Mater 164:1171–1178CrossRefGoogle Scholar
  50. Zeng F et al (2008) Phthalate esters (PAEs): emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China. Environ Pollut 156:425–434CrossRefGoogle Scholar
  51. Zhang Y et al (2015a) Contamination of phthalate esters (PAEs) in typical wastewater-irrigated agricultural soils in Hebei, North China. PLoS One 10:13. doi: 10.1371/journal.pone.0137998 Google Scholar
  52. Zhang Y, Wang PJ, Wang L, Sun GQ, Zhao JJ, Zhang H, Du N (2015b) The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China. Sci Total Environ 506:118–125. doi: 10.1016/j.scitotenv.2014.10.075 CrossRefGoogle Scholar
  53. Zhao H-M et al (2015) Variations in phthalate ester (PAE) accumulation and their formation mechanism in Chinese flowering cabbage (Brassica parachinensis L.) cultivars grown on PAE-contaminated soils. Environ Pollut 206:95–103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
  2. 2.School of ForestryNortheast Forestry UniversityHarbinChina

Personalised recommendations