Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 23, pp 19031–19043 | Cite as

De novo formation of dioxins from milled model fly ash

  • Ishrat Mubeen
  • Alfons Buekens
  • Zhiliang Chen
  • Shengyong Lu
  • Jianhua Yan
Research Article

Abstract

Municipal solid waste incineration (MSWI) fly ash has been classified as hazardous waste and needs treatment in an environmentally safe manner. Mechanochemical (MC) treatment is such a detoxification method, since it destroys dioxins and solidifies heavy metals. Milling, however, also introduces supplemental metals (Fe, Ni, Cr, Mn…), following wear of both steel balls and housing. Milling moreover reduces the particle size of fly ash and disperses catalytic metal, potentially rising the reactivity of fly ash to form and destroy ‘dioxins’, i.e. polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD + PCDF or PCDD/F). To test this issue, model fly ash (MFA) samples were composed by mixing of silica, sodium chloride, and activated carbon, and doped with CuCl2. Then, these samples were first finely milled without any additives for 0 h (original sample), 1 h and 8 h, and the effect of milling time (and hence particle size) was investigated on the formation of polycyclic aromatic hydrocarbons (PAHs), and of polychlorinated phenols (CP), benzenes (CBz), biphenyls (PCB) and dioxins (PCDD + PCDF) during de novo tests at 300 °C for 1 h, thus simulating the conditions prevailing in the post-combustion zone of an incinerator, where dioxins are formed and destroyed. These compounds are all characterized by their rate of generation (ng/g MFA) and their signature, i.e. internal distribution over congeners as a means of gathering mechanistic indications. PAH and CBz total yield did not decrease in MC treated MFA with milling time, while total pentachlorophenol (PeCP), PCB and PCDD/F yield decreased up to 86, 94 and 97%, respectively. International Toxic Equivalents (I-TEQ) concentration decreased more than 90%, while degree of chlorination varied inconsistently for PCB and PCDD/F, and average congener patterns of PCDD/F do not vary considerably with milling time for both gas and solid phase.

Keywords

Mechanochemical treatment Model fly ash Dioxins (PCDD/F) PCB PeCP De novo synthesis 

Notes

Acknowledgements

This Project was Supported by the General Program of National Natural Science Foundation of China (No. 51676172), the Zhejiang Provincial Natural Science Foundation of China (R14E060001), National Basic Research Program (973 Program) of China (No. 2011CB201500), the Science and Technology Project of Zhejiang Province (No. 2009C13004), and the Program of Introducing Talents of Discipline to University (B08026) and the Zhejiang University’s Pao Yu-Kong International Fund.

References

  1. Addink R, Olie K (1995) Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environ Sci Technol 29:1425–1435CrossRefGoogle Scholar
  2. Addink R, Cnubben P, Olie K (1995) Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans on fly ash from precursors and carbon model compounds. Carbon 33:1463–1471CrossRefGoogle Scholar
  3. Addink R, Antonioli M, Olie K, Govers HAJ (1996) Reactions of dibenzofuran and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin on municipal waste incinerator fly ash. Environ Sci Technol 30:833CrossRefGoogle Scholar
  4. Baláž P, Achimovičová M, Baláž M, Billik P et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637CrossRefGoogle Scholar
  5. Birke V, Mattik J, Runne D, Benning H, Zlatovic D (2006) Dechlorination of Recalcitrant Polychlorinated Contaminants Using Ball Milling. NATO Security through Science Series C: Environmental Security. 111–127Google Scholar
  6. Butyagin PY (1994) Problems in mechanochemistry and prospects for its development. Russ Chem Rev 63(12):965–976CrossRefGoogle Scholar
  7. Cagnetta G, Hassan MM, Huang J, Yu G, Weber R (2016a) Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling. Sci Rep. doi: 10.1038/srep22925
  8. Cagnetta G, Huang J, Wang B, Deng S, Yu G (2016b) A comprehensive kinetic model for mechanochemical destruction of persistent organic pollutants. Chem Eng J 291:30–38CrossRefGoogle Scholar
  9. Chen CN, Chen YL, Tseng WJ (2007) Surfactant-assisted de-agglomeration of graphite nanoparticles by wet ball mixing. J Mater Process Technol 190:61–64. doi: 10.1016/j.jmatprotec.2007.03.109 CrossRefGoogle Scholar
  10. Chen Z, Lu S, Mao Q, Buekens A, Chang W, Wang X, Yan J (2016) Suppressing heavy metal leaching through ball milling of fly ash. Energies. doi: 10.3390/en9070524
  11. Dickson LC, Lenoir D, Hutzinger O (1989) Surface- catalyzed formation of chlorinated dibenzodioxins and dibenzofurans during incineration. Chemosphere 19:277CrossRefGoogle Scholar
  12. Everaert K, Baeyens J (2002) The formation and emission of dioxins in large scale thermal processes. Chemosphere 46:439–448CrossRefGoogle Scholar
  13. Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater 96:201–216CrossRefGoogle Scholar
  14. Fujimori T, Takaoka M, Takeda N (2009) Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Environ Sci Technol 43:8053–8059CrossRefGoogle Scholar
  15. Fullana A, Nakka H, Sidhu S (2004) PCDF formation from PAH reactions. Organohalogen Cpds 66:1226Google Scholar
  16. Hagenmaier H, Kraft M, Brunner M, Haag R (1987) Catalytic effect of fly ash from waste incinerator facilities on the formation and decomposition of PCDD/Fs. Environ Sci Technol 19:1080–1084CrossRefGoogle Scholar
  17. Heinicke G, Hennig HP, Linke E, Steinike U, Thiessen K, Meyer PK (1984) Tribochemistry, Akademie-Verlag Berlin 1984, 495 S., 329 Abb., 106 Tab. Preis: 98, –M, Cryst Res Technol 19:1424Google Scholar
  18. Hell K, Stieglitz L, Dinjus E (2001) Mechanistic aspects of the de-novo synthesis of PCDD/PCDF on model mixtures and MSWI fly ashes using amorphous 12C- and 13C-labeled carbon. Environ Sci Technol 35:3892–3898CrossRefGoogle Scholar
  19. Huang H, Buekens A (1995) On the mechanisms of dioxin formation in combustion processes. Chemosphere 31:4099–4117CrossRefGoogle Scholar
  20. Huang J-X, Chen J-H, Lu S-Y (2017) Measurement of chlorobenzenes and chlorophenols in fly ashes from MSWI using GC-ECD and LC-MS/MS. Chin J Environ Eng 11(2):1293–1299 (in Chinese)Google Scholar
  21. Hue NT, Thuy NTT, Tung NH (2016) Polychlorobenzenes and polychlorinated biphenyls in ash and soil from several industrial areas in North Vietnam: residue concentrations, profiles and risk assessment. Environ Geochem Health 38:399CrossRefGoogle Scholar
  22. Iino F, Imagawa T, Takeuchi M, Sadakata M (1999) De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes. Environ Sci Technol 33(7):1038–1043CrossRefGoogle Scholar
  23. Iino F, Imagawa T, Gullett B (2000) Dechlorination-controlled polychlorinated dibenzofuran isomer patterns from municipal waste incinerators. Environ Sci Technol 34:3143–3147CrossRefGoogle Scholar
  24. Iino F, Tsuchiya K, Imagawa T, Gullett B (2001) An isomer prediction model based on dechlorination kinetics for polychlorinated naphthalenes, polychlorinated dibenzo-p-dioxins, and polychlorinated biphenyls from municipal waste incinerators. Environ Sci Technol 35:3175–3181CrossRefGoogle Scholar
  25. Karasek FW, Dickson LC (1987) Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration. Science 237(4816):754–756. doi: 10.1126/science.3616606 CrossRefGoogle Scholar
  26. Kim K-S, Hong K-H, Ko Y-H, Kim M-G (2004) Emission characteristics of PCDD/Fs, PCBs, chlorobenzenes, chlorophenols, and PAHs from polyvinylchloride combustion at various temperatures. J Air Waste Manage Assoc 54:555–562CrossRefGoogle Scholar
  27. Kuzuhara S, Sato H, Kasai E, Nakamura T (2003) Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon. Environ Sci Technol 37:2431–2435CrossRefGoogle Scholar
  28. Lemieux PM, Lee CW, Ryan JV, Lutes CC (2001) Bench-scale studies on the simultaneous formation of PCBs and PCDD/Fs from combustion systems. Waste Manag 21:419–425CrossRefGoogle Scholar
  29. Loiselle S, Branca M, Mulas G, Cocco G (1997) Selective mechanochemical dehalogenation of chlorobenzenes over calcium hydride. Environ Sci Technol 31(1):261–265CrossRefGoogle Scholar
  30. Lu S, Huang J, Peng Z, Li X, Yan J (2012) Ball milling 2,4,6-trichlorophenol with calcium oxide: dechlorination experiment and mechanism considerations. Chem Eng J 195–196:62–68Google Scholar
  31. Luijk R, Dorland C, Smit P, Jansen J, Govers HAJ (1994) The role of bromine in the de novo synthesis in a model fly ash system. Chemosphere 28:1299–1309CrossRefGoogle Scholar
  32. Mio H, Saeki S, Kano J, Saito F (2002) Estimation of mechanochemical dechlorination rate of poly vinyl chloride. Environ Sci Technol 36:1344–1348CrossRefGoogle Scholar
  33. Nah IW, Hwang KY, Shul YG (2008) Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs). Chemosphere 73(1):138–141CrossRefGoogle Scholar
  34. Nomura Y, Nakai S, Hosomi M (2005) Elucidation of degradation mechanism of dioxins during mechanochemical treatment. Environ Sci Technol 39:3799–3804CrossRefGoogle Scholar
  35. Pandelova M, Lenoir D, Schramm KW (2006) Correlation between PCDD/F, PCB and CBz in coal/waste combustion. Influence of various inhibitors. Chemosphere 62(7:1196–1205CrossRefGoogle Scholar
  36. Pandelova M, Stanev I, Henkelmanna B, Lenoira D, Schramm KW (2009) Correlation of PCDD/F and PCB at combustion experiments using wood and hospital waste. Influence of (NH4)2SO4 as additive on PCDD/F and PCB emissions. Chemosphere 75( 5:685–691CrossRefGoogle Scholar
  37. Peng Z, Ding Q, Sun Y, Jiang C, Gao X, Yan J (2010) Characterization of mechanochemical treated fly ash from a medical waste incinerator. J Environ Sci 22(10):1643–1648CrossRefGoogle Scholar
  38. Peng Y, Chen J, Lu S, Huang J, Zhang M, Buekens A, Li X, Yan J (2016) Chlorophenols in municipal solid waste incineration: a review. Chem Eng J 292:398–414CrossRefGoogle Scholar
  39. Ryu J-Y, Mulholland JA, Chu B (2003a) Chlorination of dibenzofuran and dibenzo-p-dioxin vapor by copper(II) chloride. Chemosphere 51:1031–1039CrossRefGoogle Scholar
  40. Ryu J-Y, Mulholland JA, Dunn JE (2003b) Polychlorinated dibenzofuran (PCDF) prediction from dibenzofuran chlorination. Organohalogen Compd 63:49–52Google Scholar
  41. Ryu J-Y, Mulholland JA, Dunn JE, Iino F, Gullett BK (2004) Potential role of chlorination pathways in PCDD/F formation in a municipal waste incinerator. Environ Sci Technol 38:5112–5119CrossRefGoogle Scholar
  42. Ryu J–Y, Choi K, Mulholland JA (2006) Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurna (PCDF) isomer patterns from municipal waste combustion: formation mechanism fingerprints. Chemosphere 65:1526–1536CrossRefGoogle Scholar
  43. Schwarz G, Stieglitz L (1992) Formation of organohalogen compounds in fly ash by metal-catalyzed oxidation of residual carbon. Chemosphere 25:277–282CrossRefGoogle Scholar
  44. Shu S, Junya K, Fumio S, Kaoru S, Seiichi M, Tsuyoshi I (2001) Effect of additives on dechlorination of PVC by mechanochemical treatment. J Mater Cycles Waste Manage 3(1):20–23Google Scholar
  45. Stieglitz L (1998) Selected topics on the de novo synthesis of PCDD/PCDF on fly ash. Environ. Eng Sci 15:5–18Google Scholar
  46. Stieglitz L, Bautz H, Roth W, Zwick G (1997) Investigation of precursor reactions in the de-novo-synthesis of PCDD/PCDF on fly ash. Chemosphere 34:1083–1090CrossRefGoogle Scholar
  47. Suryanarayana C (1995) Bibliography on mechanical alloying and milling. Cambridge International Science Publishing, CambridgeGoogle Scholar
  48. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRefGoogle Scholar
  49. Tuppurainen KA, Ruokojärvi PH, Asikainen AH, Aatamila M, Ruuskanen J (2000) Chlorophenols as precursors of PCDD/Fs in incineration processes: correlations, PLS modeling, and reaction mechanisms. Environ Sci Technol 34:4958–4962CrossRefGoogle Scholar
  50. Urakaev FK, Boldyrev VV (2000) Mechanism and kinetics of mechanochemical processes in comminuting devices: 1. Theory. Powder Technol 107:93–107CrossRefGoogle Scholar
  51. USEPA (1994) Method 1613: tetra- through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS, USEPA. USEPA Press, WashingtonGoogle Scholar
  52. USEPA (2008) Method 1668B: chlorinated biphenyl congeners in water, soil, sediment, biosolids, and tissue by HRGC/HRMS, USEPA. USEPA Press, WashingtonGoogle Scholar
  53. Vogg H, Stieglitz L (1986) Thermal behavior of PCDD/PCDF in fly ash from municipal incinerator. Chemosphere 15:1373–1378CrossRefGoogle Scholar
  54. Weber R, Iino F, Imagawa T, Takeuchi M, Sakurai T, Sadakata M (2001) Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 44:1429–1438CrossRefGoogle Scholar
  55. Wei YL, Yan JH, Lu SY, Li XD (2009) Mechanochemical decomposition of pentachlorophenol by ball milling. J Environ Sci-China 21(12):1761–1768CrossRefGoogle Scholar
  56. Wiesmuller T (1990) Examinations of the catalytic dechlorination of octachlorodibenzo-p-dioxin and octachlorodibenzofuran and application of the obtained mixtures in toxicological studies. Dissertation, University of Tubingen, Federal Republic of GermanyGoogle Scholar
  57. Wikström E, Marklund S (2000) Secondary formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes and phenols during MSW combustion. Environ Sci Technol 34:604–609CrossRefGoogle Scholar
  58. Yan JH, Peng Z, Lu SY, Li XD, Ni MJ, Cen KF, Dai HF (2007) Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. J Hazard Mater 147:652–657CrossRefGoogle Scholar
  59. Yang J, Yan M, Li X, Lu S, Chen T, Yan J, Olie K, Buekens A (2015) Formation of dioxins on NiO and NiCl2 at different oxygen concentrations. Chemosphere 133:97–102CrossRefGoogle Scholar
  60. Zhang Q, Matsumoto W, Saito HF, Baron M (2002) Debromination of hexabromobenzene by its co-grinding with CaO. Chemosphere 48(7):787–793CrossRefGoogle Scholar
  61. Zhang KL, Huang J, Yu G, Zhang QW, Deng SB, Wang B (2013) Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling. Environ Sci Technol 47(12):6471–6477CrossRefGoogle Scholar
  62. Zhang W, Wang H, Jun H, Yu M, Wang F, Zhou L (2014) Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand. Chem Eng J 239:185–191CrossRefGoogle Scholar
  63. Zhang M, Yang J, Buekens A, Olie K, Li X (2016) PCDD/F catalysis by metal chlorides and oxides. Chemosphere 159:536–544CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ishrat Mubeen
    • 1
  • Alfons Buekens
    • 1
    • 2
  • Zhiliang Chen
    • 1
  • Shengyong Lu
    • 1
  • Jianhua Yan
    • 1
  1. 1.State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power EngineeringZhejiang UniversityHangzhouChina
  2. 2.Chemical Engineering DepartmentVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations