Environmental Science and Pollution Research

, Volume 25, Issue 4, pp 3060–3077 | Cite as

Regulation of engineered nanomaterials: current challenges, insights and future directions

  • Racliffe W. S. Lai
  • Katie W. Y. Yeung
  • Mana M. N. Yung
  • Aleksandra B. Djurišić
  • John P. Giesy
  • Kenneth M. Y. LeungEmail author
Environmental Quality Benchmarks for Aquatic Ecosystem Protection: Derivation and Application


Substantial production and wide applications of engineered nanomaterials (ENMs) have raised concerns over their potential influences on the environment and humans. However, regulations of products containing ENMs are scarce, even in countries with the greatest volume of ENMs produced, such as the United States and China. After a comprehensive review of life cycles of ENMs, five major challenges to regulators posed by ENMs are proposed in this review: (a) ENMs exhibit variable physicochemical characteristics, which makes them difficult for regulators to establish regulatory definition; (b) Due to diverse sources and transport pathways for ENMs, it is difficult to monitor or predict their fates in the environment; (c) There is a lack of reliable techniques for quantifying exposures to ENMs; (d) Because of diverse intrinsic properties of ENMs and dynamic environmental conditions, it is difficult to predict bioavailability of ENMs on wildlife and the environment; and (e) There are knowledge gaps in toxicity and toxic mechanisms of ENMs from which to predict their hazards. These challenges are all related to issues in conventional assessments of risks that regulators rely on. To address the fast-growing nanotechnology market with limited resources, four ENMs (nanoparticles of Ag, TiO2, ZnO and Fe2O3) have been prioritized for research. Compulsory reporting schemes (registration and labelling) for commercial products containing ENMs should be adopted. Moreover, to accommodate their potential risks in time, an integrative use of quantitative structure-activity relationship and adverse outcome pathway (QSAR-AOP), together with qualitative alternatives to conventional risk assessment are proposed as tools for decision making of regulators.


Risk assessment framework Environmental fate and behaviour Pre-market evaluation Quantitative structure–activity relationship Adverse outcome pathway Alternatives risk assessment framework 



This project is supported by Research Grants Council of the Hong Kong Special Administrative Region Government via a General Research Fund (no. 17305715), a Collaborative Research Fund (no. C7044-14G) and a Theme-based Research Scheme (no. T21-711/16-R) to KMYL. RWSL thanks the University of Hong Kong (HKU) for partially supporting his Ph.D. study via a Type-B studentship. JPG is grateful to HKU for awarding him the Distinguished Visiting Professorship which enables him to work on this meaningful project.

Supplementary material

11356_2017_9489_MOESM1_ESM.pdf (993 kb)
ESM 1 (PDF 993 kb)


  1. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. doi: 10.1002/etc.34 CrossRefGoogle Scholar
  2. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468. doi: 10.1016/j.scitotenv.2008.10.053 CrossRefGoogle Scholar
  3. Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J (2010) Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol 44:2689–2694. doi: 10.1021/es903757q CrossRefGoogle Scholar
  4. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395. doi: 10.1007/s10646-008-0208-y CrossRefGoogle Scholar
  5. Beaudrie CEH, Kandlikar M (2011) Horses for courses: risk information and decision making in the regulation of nanomaterials. J Nanopart Res 13:1477–1488. doi: 10.1007/s11051-011-0234-1 CrossRefGoogle Scholar
  6. Beaudrie CE, Kandlikar M, Satterfield T (2013) From cradle-to-grave at the nanoscale: gaps in U.S. regulatory oversight along the nanomaterial life cycle. Environ Sci Technol 47:5524–5534. doi: 10.1021/es303591x CrossRefGoogle Scholar
  7. Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954. doi: 10.2134/jeq2009.0479 CrossRefGoogle Scholar
  8. Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47. doi: 10.1016/j.envpol.2009.08.017 CrossRefGoogle Scholar
  9. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200. doi: 10.1007/s00204-013-1079-4 CrossRefGoogle Scholar
  10. Brazell L (2012) Nanotechnology law: best practices. Wolters Kluwer Law & Business, Kluwer Law International, Alphen aan den Rijn, The NetherlandsGoogle Scholar
  11. Brown S (2009) The new deficit model. Nat Nanotechnol 4:609–611. doi: 10.1038/nnano.2009.278 CrossRefGoogle Scholar
  12. Burello E, Worth AP (2011a) QSAR modeling of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:298–306. doi: 10.1002/wnan.137 CrossRefGoogle Scholar
  13. Burello E, Worth AP (2011b) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5:228–235. doi: 10.3109/17435390.2010.502980 CrossRefGoogle Scholar
  14. Burello E, Worth AP (2015) A rule for designing safer nanomaterials: do not interfere with the cellular redox equilibrium. Nanotoxicology 9(Suppl 1):116–117. doi: 10.3109/17435390.2013.828109 CrossRefGoogle Scholar
  15. Cardillo D, Tehei M, Hossain MS, Islam MM, Bogusz K, Shi D, Mitchell D, Lerch M, Rosenfeld A, Corde S (2016) Synthesis-dependent surface defects and morphology of hematite nanoparticles and their effect on cytotoxicity in vitro. ACS Appl Mater Interfaces 8:5867–5876. doi: 10.1021/acsami.5b12065 CrossRefGoogle Scholar
  16. CFS, Center for food safety (2010) Nanotechnology and food safety. Food and Environmental Hygiene Department, HKSAR. Accessed 30th Sep 2016
  17. Chae Y, An YJ (2016) Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquat Toxicol 173:94–104. doi: 10.1016/j.aquatox.2016.01.011 CrossRefGoogle Scholar
  18. Chen W, Duan L, Zhu DQ (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41:8295–8300. doi: 10.1021/es071230h CrossRefGoogle Scholar
  19. Chen CL, Hu J, Shao DD, Li JX, Wang XK (2009) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J Hazard Mater 164:923–928. doi: 10.1016/j.jhazmat.2008.08.089 CrossRefGoogle Scholar
  20. Cheng JP, Flahaut E, Cheng SH (2007) Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxico Chem 26:708–716. doi: 10.1897/06-272R.1 CrossRefGoogle Scholar
  21. Cote I et al (2016) The next generation of risk assessment multi-year study: highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671–1682. doi: 10.1289/EHP233 CrossRefGoogle Scholar
  22. Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199. doi: 10.1897/08-341.1 CrossRefGoogle Scholar
  23. De Matteis V, Cascione M, Brunetti V, Toma CC, Rinaldi R (2016) Toxicity assessment of anatase and rutile titanium dioxide nanoparticles: the role of degradation in different pH conditions and light exposure. Toxicol in Vitro 37:201–210. doi: 10.1016/j.tiv.2016.09.010 CrossRefGoogle Scholar
  24. Defra, Department for Environment, Food & Rural Affairs (2009) Voluntary Reporting Scheme for Engineered Nanoscale Materials. Accessed 10th May 2017
  25. Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583. doi: 10.1002/etc.5620101203 CrossRefGoogle Scholar
  26. ECHA, European Chemicals Agency (2016) Guidance on registration: Version 3.0. Accessed 11th May 2017
  27. EEA, European Environment Agency (2001) Late lessons from early warnings: The precautionary principle 1896–2000. Accessed 10th May 2017
  28. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49. doi: 10.1002/tox.20610 CrossRefGoogle Scholar
  29. EPA, Environmental Protection Agency (2014) Toxic Substances Control Act Section 723.50. Accessed 11th May 2017
  30. Fan WH, Shi ZW, Yang XP, Cui MM, Wang XL, Zhang DF, Liu H, Guo L (2012) Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna. Water Res 46:5981–5988. doi: 10.1016/j.watres.2012.08.019 CrossRefGoogle Scholar
  31. Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends Analyt Chem 30:517–527. doi: 10.1016/j.trac.2010.11.014 CrossRefGoogle Scholar
  32. Forest V, Leclerc L, Hochepied JF, Trouvé A, Sarry G, Pourchez J (2017) Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol in Vitro 38:136–141. doi: 10.1016/j.tiv.2016.09.022 CrossRefGoogle Scholar
  33. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490. doi: 10.1021/es071445r CrossRefGoogle Scholar
  34. Geller W, Müller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49:316–321. doi: 10.1007/BF00347591 CrossRefGoogle Scholar
  35. Gophen M, Geller W (1984) Filter mesh size and food particle uptake by Daphnia. Oecologia 64:408–412. doi: 10.1007/BF00379140 CrossRefGoogle Scholar
  36. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155. doi: 10.1039/C0EM00547A CrossRefGoogle Scholar
  37. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222. doi: 10.1021/es9015553 CrossRefGoogle Scholar
  38. Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers-exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159:3439–3445. doi: 10.1016/j.envpol.2011.08.023 CrossRefGoogle Scholar
  39. Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300. doi: 10.1016/j.envpol.2013.06.003 CrossRefGoogle Scholar
  40. Grieger KD, Baun A, Owen R (2010) Redefining risk research priorities for nanomaterials. J Nanopart Res 12:383–392. doi: 10.1007/s11051-009-9829-1 CrossRefGoogle Scholar
  41. Gruene P, Rayner DM, Redlich B, van der Meer AF, Lyon JT, Meijer G, Fielicke A (2008) Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science 321:674–676. doi: 10.1126/science.1161166 CrossRefGoogle Scholar
  42. Hadioui M, Merdzan V, Wilkinson KJ (2015) Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS. Environ Sci Technol 49:6141–6148. doi: 10.1021/acs.est.5b00681 CrossRefGoogle Scholar
  43. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314. doi: 10.1007/s10646-008-0199-8 CrossRefGoogle Scholar
  44. Hansen SF, Baun A (2012) European regulation affecting nanomaterials - review of limitations and future recommendations. Dose-Response 10:364–383. doi: 10.2203/dose-response.10-029.Hansen CrossRefGoogle Scholar
  45. Hansen SF, Maynard A, Baun A, Tickner JA (2008a) Late lessons from early warnings for nanotechnology. Nat Nanotechnol 3:444–447. doi: 10.1038/nnano.2008.198 CrossRefGoogle Scholar
  46. Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A (2008b) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17:438–447. doi: 10.1007/s10646-008-0210-4 CrossRefGoogle Scholar
  47. Hansen SF, Larsen BH, Olsen SI, Baun A (2009) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1:243–250. doi: 10.1080/17435390701727509 CrossRefGoogle Scholar
  48. Harrison RM, Harrad S, Lead J (2003) Global disposition of contaminants. In: Hoffman DJ, Rattner BA, Burton J, Allen G, Cairns J, John (eds) Handbook of ecotoxicology, 2nd edn. Lewis Publishers, Boca Raton, FL, pp 855–875Google Scholar
  49. Hartmann G, Schuster M (2013) Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Anal Chim Acta 761:27–33. doi: 10.1016/j.aca.2012.11.050 CrossRefGoogle Scholar
  50. Hartmann NB, Jensen KA, Baun A, Rasmussen K, Rauscher H, Tantra R, Cupi D, Gilliland D, Pianella F, Riego Sintes JM (2015) Techniques and protocols for dispersing nanoparticle powders in aqueous media: is there a rationale for harmonization? J Toxicol Environ Health B 18:299–326. doi: 10.1080/10937404.2015.1074969 CrossRefGoogle Scholar
  51. He XJ, Sanders S, Aker WG, Lin YF, Douglas J, H-m H (2016) Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO2 nanoparticles in vitro. J Environ Sci 42:50–60. doi: 10.1016/j.jes.2015.05.028 CrossRefGoogle Scholar
  52. Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316. doi: 10.1016/j.chemosphere.2007.11.047 CrossRefGoogle Scholar
  53. Hendren CO, Mesnard X, Droge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569. doi: 10.1021/es103300g CrossRefGoogle Scholar
  54. Hjorth R, Hansen SF, Jacobs M, Tickner J, Ellenbecker M, Baun A (2017a) The applicability of chemical alternatives assessment for engineered nanomaterials. Integr Environ Assess Manag 13:177–187. doi: 10.1002/ieam.1762 CrossRefGoogle Scholar
  55. Hjorth R, Holden PA, Hansen SF, Colman BP, Grieger K, Hendren CO (2017b) The role of alternative testing strategies in environmental risk assessment of engineered nanomaterials. Environ Sci: Nano 4:292–301. doi: 10.1039/c6en00443a Google Scholar
  56. Hoecke KV, Quik JTK, Mankiewicz-Boczek J, Schamphelaere KAC, Karel AC, Elsaesser A, Meeren PV, Barnes C, McKerr G, Howard CV, Meent DV (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546. doi: 10.1021/es9002444 CrossRefGoogle Scholar
  57. Holden PA et al (2016) Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ Sci Technol 50:6124–6145. doi: 10.1021/acs.est.6b00608 CrossRefGoogle Scholar
  58. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924. doi: 10.2134/jeq2009.0462 CrossRefGoogle Scholar
  59. Hristozov DR, Gottardo S, Critto A, Marcomini A (2012) Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective. Nanotoxicology 6:880–898. doi: 10.3109/17435390.2011.626534 CrossRefGoogle Scholar
  60. Hsu A, Liu FZ, Leung YH, Ma APY, Djurišić AB, Leung FCC, Chan WK, Lee HK (2014) Is the effect of surface modifying molecules on antibacterial activity universal for a given material? Nano 6:10323–10331. doi: 10.1039/C4NR02366H Google Scholar
  61. Hund-Rinke K, Baun A, Cupi D, Fernandes TF, Handy R, Kinross JH, Navas JM, Peijnenburg W, Schlich K, Shaw BJ, Scott-Fordsmand JJ (2016) Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology 10:1442–1447. doi: 10.1080/17435390.2016.1229517 CrossRefGoogle Scholar
  62. ISO, International Organization for Standardization (2015) Nanotechnologies-Vocabulary-Part2:Nano-objects. Accessed 30th Sep 2016
  63. Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Bhalerao GM, Chakravarty S, Raichur AM, Chandrasekaran N (2015) Combined toxicity of two crystalline phases (anatase and rutile) of titania nanoparticles towards freshwater microalgae: Chlorella sp. Aqua Toxicol 161:154–169. doi: 10.1016/j.aquatox.2015.02.006 CrossRefGoogle Scholar
  64. Iswarya V, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016) Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia. Aqua Toxicol 178:209–221. doi: 10.1016/j.aquatox.2016.08.007 CrossRefGoogle Scholar
  65. Jarošová B, Filip J, Hilscherová K, Tuček J, Šimek Z, Giesy JP, Zbořil R, Bláha L (2015) Can zero-valent iron nanoparticles remove waterborne estrogens? J Environ Manag 150:387–392. doi: 10.1016/j.jenvman.2014.12.007 CrossRefGoogle Scholar
  66. Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530. doi: 10.1016/j.cej.2010.11.026 CrossRefGoogle Scholar
  67. Johnson AC, Bowes MJ, Crossley A, Jarvie HP, Jurkschat K, Jurgens MD, Lawlor AJ, Park B, Rowland P, Spurgeon D, Svendsen C, Thompson IP, Barnes RJ, Williams RJ, Xu N (2011) An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Sci Total Environ 409:2503–2510. doi: 10.1016/j.scitotenv.2011.03.040 CrossRefGoogle Scholar
  68. Juberg DR et al (2017) FutureTox III: bridges for translation. Toxicol Sci 155:22–31. doi: 10.1093/toxsci/kfw194 CrossRefGoogle Scholar
  69. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188:112–118. doi: 10.1016/j.toxlet.2009.03.014 CrossRefGoogle Scholar
  70. Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967. doi: 10.1021/es902987d CrossRefGoogle Scholar
  71. Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, Weiss CA (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27:1932–1941. doi: 10.1897/07-624.1 CrossRefGoogle Scholar
  72. Klain SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. doi: 10.1897/08-090.1 CrossRefGoogle Scholar
  73. Knudsen TB et al (2015) FutureTox II: in vitro data and in silico models for predictive toxicology. Toxicol Sci 143:256–267. doi: 10.1093/toxsci/kfu234 CrossRefGoogle Scholar
  74. Kumar CSSR (2006) Biotoxicity of metal oxide nanoparticles. In: Fond AM, Meyer GJ (eds) Nanomaterials – toxicity, health and environmental issues. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar
  75. Kumar N, Shah V, Walker VK (2012) Influence of a nanoparticle mixture on an arctic soil community. Environ Toxicol Chem 31:131–135. doi: 10.1002/etc.721 CrossRefGoogle Scholar
  76. Kvitek L, Panáček A, Soukupova J, Kolář M, Večeřová R, Prucek R, Holecova M, Zbořil R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834. doi: 10.1021/jp711616v CrossRefGoogle Scholar
  77. Kwak JI, An YJ (2016) Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails (Collembola). J Hazard Mater 315:110–116. doi: 10.1016/j.jhazmat.2016.05.005 CrossRefGoogle Scholar
  78. Kwok KWH, Leung KMY, Flahaut E, Cheng JP, Cheng SH (2010) Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine 5:951–961. doi: 10.2217/nnm.10.59 CrossRefGoogle Scholar
  79. Leung YH, Chan CM, Ng AM, Chan HT, Chiang MW, Djurišić AB, Ng YH, Jim WY, Guo MY, Leung FCC, Chan WK, Au DT (2012) Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology 23:475703. doi: 10.1088/0957-4484/23/47/475703 CrossRefGoogle Scholar
  80. Leung YH et al (2015) Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties. J. Photochem Photobiol B Biol 145:48–59CrossRefGoogle Scholar
  81. Li MH, Huang CP (2011) The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: effect of physical–chemical treatment. Carbon 49:1672–1679. doi: 10.1016/j.carbon.2010.12.052 CrossRefGoogle Scholar
  82. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173. doi: 10.1021/nn300934k CrossRefGoogle Scholar
  83. Limbach LK, Bereiter R, Müller E, Krebs R, Gälli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833. doi: 10.1021/es800091f CrossRefGoogle Scholar
  84. Linkov I, Satterstrom FK (2008) Nanomaterial risk assessment and risk management. In: Linkov I, Ferguson E, Magar VS (eds) Real-time and deliberative decision making. NATO Science for peace and security series C: environmental security. Springer, Dordrecht. doi: 10.1007/978-1-4020-9026-4_8 CrossRefGoogle Scholar
  85. Linkov I, Satterstrom FK, Monica JC Jr, Hansen SF, Davis TA (2009) Nano risk governance: current developments and future perspectives. Nanotech L & Bus 6:203–220Google Scholar
  86. Liu JF, Chao JB, Liu R, Tan ZQ, Yin YG, Wu Y, Jiang GB (2009) Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal Chem 81:6496–6502. doi: 10.1021/ac900918e CrossRefGoogle Scholar
  87. Liu N, Li K, Li X, Chang Y, Feng YL, Sun XJ, Cheng Y, Wu ZJ, Zhang HY (2016) Crystallographic facet-induced toxicological responses by faceted titanium dioxide nanocrystals. ACS Nano 10:6062–6073. doi: 10.1021/acsnano.6b01657 CrossRefGoogle Scholar
  88. Majedi SM, Lee HK, Kelly BC (2012) Chemometric analytical approach for the cloud point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide nanoparticles in water samples. Anal Chem 84:6546–6552. doi: 10.1021/ac300833t CrossRefGoogle Scholar
  89. Malloy TF (2011) Nanotechnology regulation: a study in claims making. ACS Nano 5:5–12. doi: 10.1021/nn103480e CrossRefGoogle Scholar
  90. Maynard AD (2011) Don't define nanomaterials. Nature 475:31–31. doi: 10.1038/475031a CrossRefGoogle Scholar
  91. Metcalfee C, Bennettm E, Chappell M, Steevens J, Depledge M, Goss G, Goudey S, Kaczmar S, O’Brien N, Picado A (2009) Strategic management and assessment of risks and toxicity of engineered Nanomaterials (SMARTEN). In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits, 1st edn. Springer, Dordrecht, pp 95–109CrossRefGoogle Scholar
  92. Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF (2012a) Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J Anal At Spectrom 27:1131–1142. doi: 10.1039/C2JA30021D CrossRefGoogle Scholar
  93. Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012b) Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem 31:115–121. doi: 10.1002/etc.719 CrossRefGoogle Scholar
  94. Mordor Intelligence (2016) Global nanomaterials market-segmented by product type, end-user industry, and geography-trends and forecasts (2015–2020). Accessed 30 Sep 2016
  95. Morose G (2010) The 5 principles of “Design for Safer Nanotechnology”. J Clean Prod 18:285–289. doi: 10.1016/j.jclepro.2009.10.001 CrossRefGoogle Scholar
  96. Mu Y, Wu F, Zhao Q, Ji R, Qie T, Zhou Y, Hu Y, Pang C, Hristozov D, Giesy JP, Xing B (2016) Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology 10:1207–1214. doi: 10.1080/17435390.2016.1202352 CrossRefGoogle Scholar
  97. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453. doi: 10.1021/es7029637 CrossRefGoogle Scholar
  98. Mwangi JN, Wang N, Ingersoll CG, Hardesty DK, Brunson EL, Li H, Deng B (2012) Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ Toxicol Chem 31:1823–1830. doi: 10.1002/etc.1888 CrossRefGoogle Scholar
  99. Neal C, Jarvie H, Rowland P, Lawler A, Sleep D, Scholefield P (2011) Titanium in UK rural, agricultural and urban/industrial rivers: geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention. Sci Total Environ 409:1843–1853. doi: 10.1016/j.scitotenv.2010.12.021 CrossRefGoogle Scholar
  100. Neal AL, Kabengi N, Grider A, Bertsch PM (2012) Can the soil bacterium Cupriavidus necator sense ZnO nanomaterials and aqueous Zn2+ differentially? Nanotoxicology 6:371–380. doi: 10.3109/17435390.2011.579633 CrossRefGoogle Scholar
  101. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi: 10.1126/science.1114397 CrossRefGoogle Scholar
  102. Nel A, Xia T, Meng H, Wang X, Lin SJ, Ji ZX, Zhang HY (2013) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–621. doi: 10.1021/ar300022h CrossRefGoogle Scholar
  103. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. doi: 10.1016/j.envpol.2007.06.006 CrossRefGoogle Scholar
  104. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25. doi: 10.1080/17435390701314761 CrossRefGoogle Scholar
  105. OECD, Organisation for Economic Co-operation and Development (2009) Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials Accessed 10th May 2017
  106. OECD, Organisation for Economic Co-operation and Development (2010) List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: revision. Accessed 12 Dec 2017
  107. OECD, Organisation for Economic Co-operation and Development (2012) Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. Accessed 3rd Feb 2017
  108. OECD, Organisation for Economic Co-operation and Development (2014) Ecotoxicology and environmental fate of manufactured nanomaterials: Test guidelines.
  109. OECD, Organisation for Economic Co-operation and Development (2015) Landfilling of Waste Containing Nanomaterials and Nanowaste. Accessed 12th Oct 2016
  110. Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817. doi: 10.1016/j.biomaterials.2011.08.085 CrossRefGoogle Scholar
  111. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in europe and world. J Nanopart Res 14:1109–1120. doi: 10.1007/s11051-012-1109-9 CrossRefGoogle Scholar
  112. Rowlands JC, Sander M, Bus JS, Committee FTO (2014) FutureTox: building the road for 21st century toxicology and risk assessment practices. Toxicol Sci 137:269–277. doi: 10.1093/toxsci/kft252 CrossRefGoogle Scholar
  113. SCENIHR, Scientific Committee on Emerging and Newly Identified Health Risks (2007) The appropriateness of the risk assessment methodology in accordance with the Technical Guidance Documents for new and existing substances for assessing the risks of nanomaterials. Accessed 11th May 2017
  114. SCENIHR, Scientific Committee on Emerging and Newly Identified Health Risks (2009) Risk assessment of products of nanotechnologies. Accessed 11th May 2017
  115. Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260. doi: 10.1021/es071818o CrossRefGoogle Scholar
  116. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carrière M (2009) Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429. doi: 10.1021/es9016975 CrossRefGoogle Scholar
  117. Snyder EM, Snyder SA, Giesy JP, Blonde SA, Hurlburt GK, Summer CL, Mitchell RR, Bush DM (2000) SCRAM: a scoring and ranking system for persistent, bioaccumulative, and toxic substances for the north American Great Lakes. Environ Sci Pollut Res 7:52–61. doi: 10.1007/BF03028072 CrossRefGoogle Scholar
  118. Sprung M, Rose U (1988) Influence of food size and food quantity on the feeding of the mussel Dreissena polymorpha. Oecologia 77:526–532. doi: 10.1007/BF00377269 CrossRefGoogle Scholar
  119. Su GY, Zhang XW, Giesy JP, Musarrat J, Saquib Q, Alkhedhairy AA, Yu HX (2015) Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach. Environ Sci Pollut Res 22:17434–17442. doi: 10.1007/s11356-015-4507-6 CrossRefGoogle Scholar
  120. Sun H, Zhang XZ, Niu Q, Chen YS, CJ C (2006) Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticle. Water Air Soil Pollut 178:245–254. doi: 10.1007/s11270-006-9194-y CrossRefGoogle Scholar
  121. Sun TY, Gottschalk F, Hungerbuhler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76. doi: 10.1016/j.envpol.2013.10.004 CrossRefGoogle Scholar
  122. Taghon GL (1982) Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia 52:295–304. doi: 10.1007/BF00367951 CrossRefGoogle Scholar
  123. Tang Z, Zhao XL, Zhao TH, Wang H, Wang PF, Wu FC, Giesy JP (2016) Magnetic nanoparticles interaction with humic acid: in the presence of surfactants. Environ Sci Technol 50:8640–8648. doi: 10.1021/acs.est.6b01749 CrossRefGoogle Scholar
  124. Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991. doi: 10.1021/es061953l CrossRefGoogle Scholar
  125. Tong Z, Bischoff M, Nies LF, Myer P, Applegate B, Turco RF (2012) Response of soil microorganisms to as-produced and functionalized single-wall carbon nanotubes (SWNTs). Environ Sci Technol 46:13471–13479. doi: 10.1021/es303251r CrossRefGoogle Scholar
  126. Tourinho PS, van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692. doi: 10.1002/etc.1880 CrossRefGoogle Scholar
  127. Tuoriniemi J, Cornelis G, Hassellov M (2012) Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem 84:3965–3972. doi: 10.1021/ac203005r CrossRefGoogle Scholar
  128. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. doi: 10.3762/bjnano.6.181 CrossRefGoogle Scholar
  129. von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Analyt Chem 30:425–436. doi: 10.1016/j.trac.2010.11.012 CrossRefGoogle Scholar
  130. von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans AA, Horne N, Unrine JM (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49. doi: 10.1002/etc.723 CrossRefGoogle Scholar
  131. Warheit DB (2008) How meaningful are the results of Nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101:183–185. doi: 10.1093/toxsci/kfm279 CrossRefGoogle Scholar
  132. Weinberg AM (1985) Science and its limits: the regulator's dilemma. Issues Sci Technol 2:59–72. doi:
  133. Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monitor 13:1195–1203. doi: 10.1039/C1EM10017C CrossRefGoogle Scholar
  134. Wong SWY, Leung KMY (2014) Temperature-dependent toxicities of nano zinc oxide to marine diatom, amphipod and fish in relation to its aggregation size and ion dissolution. Nanotoxicology 8(Suppl 1):24–35. doi: 10.3109/17435390.2013.848949 CrossRefGoogle Scholar
  135. Wong SWY, Leung PTY, Djurišić AB, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618. doi: 10.1007/s00216-009-3249-z CrossRefGoogle Scholar
  136. Wong SWY, Leung KMY, Djurišić AB (2013) A comprehensive review on the aquatic toxicity of engineered nanomaterials. Rev Nanosci Nanotechnol 2:79–105. doi: 10.1166/rnn.2013.1025 CrossRefGoogle Scholar
  137. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134. doi: 10.1021/nn800511k CrossRefGoogle Scholar
  138. Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452. doi: 10.1016/j.scitotenv.2011.01.015 CrossRefGoogle Scholar
  139. Xiu ZM, Zhang QM, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi: 10.1021/nl301934w CrossRefGoogle Scholar
  140. Yang K, Xing BS (2007) Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ Pollut 145:529–537. doi: 10.1016/j.envpol.2006.04.020 CrossRefGoogle Scholar
  141. Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367. doi: 10.1021/es103995x CrossRefGoogle Scholar
  142. Yung MMN et al (2015a) Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquat Toxicol 165:31–40. doi: 10.1016/j.aquatox.2015.05.015 CrossRefGoogle Scholar
  143. Yung MMN, Mouneyrac C, Leung KMY (2015b) Ecotoxicity of zinc oxide nanoparticles in the marine environment. Encycl Nanotechnol:2075–2084. doi: 10.1007/978-94-007-6178-0_100970-1
  144. Yung MMN et al (2017) Influences of temperature and salinity on physicochemical properties and toxicity of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Sci Rep. doi: 10.1038/s41598-017-03889-1
  145. Zhang HY et al (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for acute pulmonary inflammation based on oxidative stress. ACS Nano 6:4349–4368. doi: 10.1021/nn3010087 CrossRefGoogle Scholar
  146. Zhao XL, Liu SL, Wang PF, Tang Z, Niu HY, Cai YQ, Wu FC, Wang H, Meng W, Giesy JP (2015) Surfactant-modified flowerlike layered double hydroxide-coated magnetic nanoparticles for preconcentration of phthalate esters from environmental water samples. J Chromatogr A 1414:22–30. doi: 10.1016/j.chroma.2015.07.105 CrossRefGoogle Scholar
  147. Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010) Trophic transfer of TiO2 nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933. doi: 10.1016/j.chemosphere.2010.03.022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Racliffe W. S. Lai
    • 1
  • Katie W. Y. Yeung
    • 1
  • Mana M. N. Yung
    • 1
  • Aleksandra B. Djurišić
    • 2
  • John P. Giesy
    • 1
    • 3
    • 4
  • Kenneth M. Y. Leung
    • 1
    • 5
    Email author
  1. 1.The Swire Institute of Marine Science and School of Biological SciencesThe University of Hong KongPokfulamHong Kong, China
  2. 2.Department of PhysicsThe University of Hong KongPokfulamHong Kong, China
  3. 3.Department of Veterinary Biomedical Sciences and Toxicology CentreUniversity of SaskatchewanSaskatoonCanada
  4. 4.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingPeople’s Republic of China
  5. 5.State Key Laboratory in Marine PollutionCity University of Hong KongKowloonHong Kong, China

Personalised recommendations