Environmental Science and Pollution Research

, Volume 24, Issue 24, pp 19965–19979 | Cite as

TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment

  • Marin Kovacic
  • Hrvoje KusicEmail author
  • Mattia Fanetti
  • Urska Lavrencic Stangar
  • Matjaz Valant
  • Dionysios D. Dionysiou
  • Ana Loncaric BozicEmail author
Research Article


The study is aimed at evaluating TiO2-SnS2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO2-SnS2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO2 and SnS2) within the immobilization step. The as-prepared TiO2-SnS2 composites and their sole components (TiO2 or SnS2) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO2-SnS2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO2-SnS2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO2-SnS2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO2-SnS2 composites showed higher activity at neutral pH.


Solar photocatalysis TiO2-SnS2 nanocomposites Thin films Water treatment Diclofenac 



We acknowledge the financial support from the Croatian Science Foundation (Project UIP-11-2013-7900; Environmental Implications of the Application of Nanomaterials in Water Purification Technologies (NanoWaP)) and Slovenian Research Agency.

Supplementary material

11356_2017_9485_MOESM1_ESM.doc (16.3 mb)
ESM 1 (DOC 16.2 mb)


  1. Beranek R, Kisch H (2007) Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochem Photobiol Sci 7:40–48CrossRefGoogle Scholar
  2. Boncagni NT, Otaegui JM, Warner E, Curran T, Ren J, Fidalgo de Cortalezzi MM (2009) Exchange of TiO2 nanoparticles between streams and streambeds. Environ Sci Technol 43:7699–7705CrossRefGoogle Scholar
  3. Burton LA, Colombara D, Abellon RD, Grozema FC, Peter LM, Savenije TJ, Dennler G, Walsh A (2013) Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater 25:4908–4916CrossRefGoogle Scholar
  4. Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B 67:197–205CrossRefGoogle Scholar
  5. Chen X, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019CrossRefGoogle Scholar
  6. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  7. Chowdhury P, Moreira J, Gomaa H, Ray AK (2012) Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study. Ind Eng Chem Res 51:4523–4532CrossRefGoogle Scholar
  8. Dette C, Pérez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, Giustino F, Jung SJ, Kern K (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14:6533–6538CrossRefGoogle Scholar
  9. EU (2013) Directive 2013/39/EU of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Communities 226:1–17Google Scholar
  10. Evonik Industries (2016) AEROXIDE®, AERODISP® and AEROPERL® titanium dioxide as photocatalyst, Technical information 1243- Accessed on Dec 18, 2016
  11. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14CrossRefGoogle Scholar
  12. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  13. Gurevich YY, Pleskov YV (1983) Photoelectrochemistry of semiconductors. In: Willardson RK (ed) Beer AC (eds) semiconductors and semimetals: deep levels, GaAs, alloys, photochemistry, vol 19. Academic Press Elsevier, New York, pp 255–328Google Scholar
  14. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218CrossRefGoogle Scholar
  15. Katsanaki AV, Kontos AG, Maggos T, Pelaez M, Likodimos V, Pavlatou EA, Dionysiou DD, Falaras P (2013) Photocatalytic oxidation of nitrogen oxides on N-F-doped titania thin films. Appl Catal B 140-141:619–625CrossRefGoogle Scholar
  16. Kete M, Pavlica E, Fresno F, Bratina G, Lavrencic Stangar U (2014) Highly active photocatalytic coatings prepared by a low-temperature method. Environ Sci Pollut Res 21:11238–11249CrossRefGoogle Scholar
  17. Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502CrossRefGoogle Scholar
  18. Kovacic M, Salaeh S, Kusic H, Suligoj A, Kete M, Fanetti M, Lavrencic Stangar U, Dionysiou DD, Loncaric Bozic A (2016) Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environ Sci Pollut Res 23:17982–17994CrossRefGoogle Scholar
  19. Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246CrossRefGoogle Scholar
  20. Kusic H, Leszczynska D (2012) Altered toxicity of organic pollutants in water originated from simultaneous exposure to UV photolysis and CdSe/ZnS quantum dots. Chemosphere 89:900–906CrossRefGoogle Scholar
  21. Li L, Wang L, Hu T, Zhang W, Zhang X, Chen X (2014) Preparation of highly photocatalytic active CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis. J Solid State Chem 218:81–89CrossRefGoogle Scholar
  22. Lima ANC, Topolski DK (2011) Nanomaterials for application in refractory materials. In: Perez Bergmann C, Jung de Andrade M (eds) Nanostructured materials for engineering applications. Springer, Heidelberg, pp 133–140CrossRefGoogle Scholar
  23. Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) Large-scale synthesis of transition-metal doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135:9995–9998CrossRefGoogle Scholar
  24. Lopez R, Gomez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7CrossRefGoogle Scholar
  25. Moradi S, Azar PA, Farshid SR, Khorrami SA, Givianrad MH (2012) Effect of additives on characterization and photocatalytic activity of TiO2/ZnO nanocomposite prepared via sol-gel process. Inter J Chem Eng 2012(215373):1–5CrossRefGoogle Scholar
  26. Mossak Kamkui H, Laminsi S, Njopwouo D, Tiya Djowe A (2014) Deep insight in thermal synthesis of tin disulphide (SnS2) microplates, starting from tin sulphate and sulfur: growth mechanism based on LUX FLOOD’s theory of acid and base. Chalcogenide Lett 11:219–226Google Scholar
  27. Park J-Y, Choi K-I, Lee J-H, Hwang C-H, Choi D-Y, Lee J-W (2013) Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Mater Lett 97:64–66CrossRefGoogle Scholar
  28. Peeters OM, de Ranter CJ (1977) Pathways in thioacetamide hydrolysis in aqueous acid: detection by kinetic analysis. J. Chem. Soc Perkin Trans 2(15):1832–1835Google Scholar
  29. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  30. Perez-Estrada LA, Malato S, Gernjak W, Aguera A, Thurman EM, Ferrer I, Fernandez-Alba AR (2005) Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ Sci Technol 39:8300–8306CrossRefGoogle Scholar
  31. Pichat P (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, WeinheimCrossRefGoogle Scholar
  32. Postigo C, Barceló D (2015) Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 503-504:32–47CrossRefGoogle Scholar
  33. Robertson PKJ, Robertson JMC, Bahnemann DW (2012) Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater 211-212:161–171CrossRefGoogle Scholar
  34. Robles Velasco MV, Daud Sarruf F, Nunes Salgado-Santos IM, Haroutiounian-Filho CA, Kaneko TM, Baby AR (2008) Broad spectrum bioactive sunscreens. Int J Pharm 363:50–57CrossRefGoogle Scholar
  35. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  36. Štengl V, Bakardjieva S, Murafa N, Houšková V, Lang K (2008) Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogenous hydrolysis. Microporous Mesoporous Mater 110:370–378CrossRefGoogle Scholar
  37. Stülten D, Zühlke S, Lamshöft M, Spiteller M (2008) Occurrence of diclofenac and selected metabolites in sewage effluents. Sci Total Environ 405:310–316CrossRefGoogle Scholar
  38. Trovo AG, Nogueira RFP (2011) Diclofenac abatement using modified solar photo-Fenton process with ammonium iron(III) citrate. J Braz Chem Soc 22(6):1033–1039CrossRefGoogle Scholar
  39. Umar A, Akhtar MS, Dar GN, Abaker M, Al-Hajry A, Baskoutas S (2013) Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta 114:183–190CrossRefGoogle Scholar
  40. Urlaub R, Posset U, Thull R (2000) Spectroscopic investigations on sol-gel derived coatings from acid-modified titanium alkoxides. J Non-Cryst Solids 265:276–284CrossRefGoogle Scholar
  41. Zhang YC, Li J, Xu HY (2012) One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Appl Catal B 123-124:18–26CrossRefGoogle Scholar
  42. Zhu W, Yang Y, Ma D, Wang H, Zhang Y, Hu H (2015) Controlled growth of flower-like SnS2 hierarchical structures with superior performance for lithium-ion battery applications. Ionics 21:19–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Marin Kovacic
    • 1
  • Hrvoje Kusic
    • 1
    Email author
  • Mattia Fanetti
    • 2
  • Urska Lavrencic Stangar
    • 3
    • 4
  • Matjaz Valant
    • 2
    • 5
  • Dionysios D. Dionysiou
    • 6
  • Ana Loncaric Bozic
    • 1
    Email author
  1. 1.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Materials Research LaboratoryUniversity of Nova GoricaAjdovscinaSlovenia
  3. 3.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Laboratory for Environmental ResearchUniversity of Nova GoricaNova GoricaSlovenia
  5. 5.Institute of Fundamental and Frontier ScienceUniversity of Electronic Sciences and Technology of ChinaChengduChina
  6. 6.Environmental Engineering and Science ProgramUniversity of CincinnatiCincinnatiUSA

Personalised recommendations