Environmental Science and Pollution Research

, Volume 24, Issue 25, pp 20160–20172 | Cite as

Health risks of environmental exposure to metals and herbicides in the Pardo River, Brazil

  • Carolina S. Machado
  • Brisa M. Fregonesi
  • Renato I. S. Alves
  • Karina A. A. Tonani
  • Jordi Sierra
  • Bruno S. Martinis
  • Beatriz S. Celere
  • Montse Mari
  • Marta Schuhmacher
  • Martí Nadal
  • Jose L. Domingo
  • Susana Segura-Muñoz
Efficient & Sustainable Water Systems Management toward Worth Living Development

Abstract

Mixture of metals and herbicides in rivers may pose relevant risks for the health of surrounding communities. Humans may be exposed to river pollution through intake of contaminated water and fish, as well as irrigated agricultural products. The aim of this study was to assess the human health risks of environmental exposure to metals and herbicides through water and fish intake in the Pardo River. Metals (Al, As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V, and Zn) were analyzed in river water and in edible fish. Herbicides (ametryn, atrazine, diuron, hexazinone, simazine, and tebuthiuron) were analyzed in river water. Seasonal variances were also studied. Aluminum, Cd, Cu, Mn, Pb, and Zn levels in river water were higher than the USEPA benchmarks. Non-carcinogenic risks due to pollutants mixture exposure were above the limit, and carcinogenic risks of As exposure were >10−6 in the sampling points during the rainy season. Metal levels in fish were lower than the Brazilian legislation and do not pose a threat to public health. Herbicides were detected in four sampling points, with atrazine concentrations (range 0.16–0.32 μg/L) below the Brazilian standard (2.0 μg/L), but above the European Union standard (0.1 μg/L). Considering the water supply needs of cities located in the Pardo River Basin and the persistence of metals and herbicides, the present study indicated that there was a seasonal influence on non-carcinogenic and carcinogenic risks to human health, especially in the rainy season. Studies for water treatment plants implantation should consider the risks of exposure to persistent substances, in order to protect the population.

Keywords

Health risk assessment Metals Herbicides Fish and water intake Pardo River, Brazil 

Supplementary material

11356_2017_9461_MOESM1_ESM.docx (17 kb)
Supplementary Fig. 1(DOCX 17 kb)

References

  1. Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJA, Montagnerd CC, Umbuzeiro GA (2016) Pesticides in Brazilian freshwaters: a critical review. Environ Sci: Processes Impacts 18:779–787. doi:10.1039/C6EM00268D Google Scholar
  2. Alves RIS, Sampaio CF, Nadal M, Schuhmacher M, Domingo JL, Segura-Muñoz SI (2014) Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133:149–155. doi:10.1016/j.envres.2014.05.012 CrossRefGoogle Scholar
  3. ANA (2016) Agência Nacional de Águas. http://www2.ana.gov.br/Paginas/default.aspx. Acessed 31 Aug 2016
  4. ANA Agência Nacional de Águas (2013) Outorgas. Resolução n° 1021/2013 Outorga Preventiva, CNARH 35.0.0075160/24, Brasília, DF, BrasilGoogle Scholar
  5. ANVISA Agência Nacional de Vigilância Sanitária (2013) Resolução - RDC N° 42, de 29 de agosto de 2013. Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos, Brasília, DF, BrasilGoogle Scholar
  6. APHA American Public Health Association (2006) American Water Works Association and Water Environment Federation. 1060 Collection and Preservation of Samples. Standard Methods for the Examination of Water and Waste water, Washington, DC, USAGoogle Scholar
  7. Barchanska H, Sajdak M, Szczypka K, Swientek A, Tworek M, Kurek M (2017) Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. Environ Sci Pollut Res Int 24:644-658. doi:10.1007/s11356-016-7798-3
  8. Bargos FF, Lamas WQ, Bargos DC, Neto MB, Pardal PCPM (2016) Location problem method applied to sugar and ethanol mills location optimization. Renew Sust Energ Rev 65:274–282. doi:10.1016/j.rser.2016.06.079 CrossRefGoogle Scholar
  9. Benner J, Helbling DE, Kohler HPE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B, Springael D, Walravens E, Boon N (2013) Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res 47:5955–5976CrossRefGoogle Scholar
  10. BHM (Brazilian Health Ministry) (2011) Portaria n° 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade, Brasília, DF, BrasilGoogle Scholar
  11. Bonadio SL, Paschoalato CFPR, Júnior RP, Innocentini MDM (2005) Avaliação da qualidade da água do rio Pardo na região de Ribeirão Preto. http://www.bvsde.paho.org/bvsaidis/uruguay30/BR08505_Bonadio.pdf. Accessed 22 Sept 2016
  12. Bondy SC (2016) Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. Neurotoxicology 52:222–229. doi:10.1016/j.neuro.2015.12.002 CrossRefGoogle Scholar
  13. Botelho RG, Monteiro SH, Christofoletti CA, Moura-Andrade GCR, Tornisielo VL (2015) Environmentally relevant concentrations of atrazine and ametrine induce micronuclei formation and nuclear abnormalities in erythrocytes of fish. Arch Environ Contam Toxicol 69:577–585. doi:10.1007/s00244-015-0171-6 CrossRefGoogle Scholar
  14. Buckup PA, Menezes NA, Ghazzi MS (2007) Catálogo das espécies de peixes de água doce do Brasil, Rio de Janeiro, RJ, BrasilGoogle Scholar
  15. Callan AC, Devine A, Qui L, Ng JC, Hinwood AL (2015) Investigation of the relationship between low environmental exposure to metals and bone mineral density, bone resorption and renal function. Int J Hyg Environ Health 218:444–451. doi:10.1016/j.ijheh.2015.03.010 CrossRefGoogle Scholar
  16. Cardoso-Silva S, Ferreira PAL, Moschini-Carlos V, Figueira RCL, Pompeo M (2016) Temporal and spatial accumulation of heavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environ Earth Sci 75:9. doi:10.1007/s12665-015-4828-2 CrossRefGoogle Scholar
  17. Carmo DA, Carmo APB, Pires JMB, Oliveira JLM (2013) Environmental behavior and toxicity of herbicides atrazine and simazine. Rev Ambient Água 8:133–143. doi:10.4136/ambi-agua.1073 Google Scholar
  18. CBH Pardo (2015) Relatório de situação 2015 (Ano base 2014) Comitê da Bacia Hidrográfica do Rio Pardo, Grupo de Trabalho Permanente do Relatório Anual de Situação dos Recursos Hídricos e Plano de Bacia/UGRHI-4 Pardo. http://www.sigrh.sp.gov.br/relatoriosituacaodosrecursoshidricos. Acessed 25 Nov 2015
  19. Conama (Conselho Nacional do Meio Ambiente) (2005) Resolução n°357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providencias, Brasília, DF, BrasilGoogle Scholar
  20. DAEE (2017) Departamento de Águas e Energia Elétrica. http://www.hidrologia.daee.sp.gov.br/. Acessed 03 Apr 2017
  21. David GS, Castro PMGC, Maruyama LS, Carvalho ED (2016) Artes de pesca artesanal nos reservatórios de Barra Bonita e Bariri: monitoramento pesqueiro na Bacia do Médio Rio Tietê. Bol Inst Pesca 42:29–49. doi:10.5007/1678-2305.2016v42n1p29 CrossRefGoogle Scholar
  22. Deus ACF, Bull LT, Corrêa JC, Boas RLV (2014) Nutrient accumulation and biomass production of alfafa after soil amendment with silicates. Rev Ceres 61:406–4013. doi:10.1590/S0034-737X2014000300016 CrossRefGoogle Scholar
  23. Djikanović V, Skorić S, Jarić I, Lenhardt M (2016) Age-specific metal and accumulation patterns in different tissues of nase (Chodrostoma nasus) from the Medjuvršje Reservoir. Sci Total Environ 566-567:185–190. doi:10.1016/j.scitotenv.2016.05.072 CrossRefGoogle Scholar
  24. Domingo JL, Bócio A, Martí-cid R, Llobet JM (2007) Benefits and risks of fish consumption: part II. RIBEPEIX, a computer program to optimize the balance between the intake of omega-3 fatty acids and chemical contaminants. Toxicology 230(2–3):227–233. doi:10.1016/j.tox.2006.11.059 CrossRefGoogle Scholar
  25. DOSP (2012) Diário Oficial do Estado de São Paulo. Empresarial. Imprensa Oficial do Estado SA, p. 22. http://www.jusbrasil.com.br/diarios/41750097/dosp-empresarial-25-10-2012-pg-22. Acessed 26 June 2015
  26. Duke SO (1990) Overview of herbicide mechanisms of action. Env Health Persp 87:263–271CrossRefGoogle Scholar
  27. Duraes R, Pompeu PS, Godinho AL (2001) Diet of four species of Leporinus (Characiformes, Anostomidae) during formation of a reservoir in southeast Brazil. Iheringia Sér Zool 90:183–191. doi:10.1590/S0073-47212001000100019 CrossRefGoogle Scholar
  28. Fairbairn DJ, Karpuzcu ME, Arnold WA, Barber BL, Kaufenberg EF, Koskinen W, Novak PJ, Rice PJ, Swackhamer DL (2016) Sources and transport of contaminants of emerging concern: a two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Sci Total Environ 551-552:605–613. doi:10.1016/j.scitotenv.2016.02.056 CrossRefGoogle Scholar
  29. Falandysz J, Chudzińska M, Barałkiewicz D, Drewnowska M, Hanć A (2017) Toxic elements and bio-metals in Cantharellus mushrooms from Poland and China. Environ Sci Pollut Res 24:11472. doi:10.1007/s11356-017-8554-z CrossRefGoogle Scholar
  30. FAO (Food and Agriculture Organization of the United Nations)/Centro para serviços de informação e acessoria sobre a comercialização dos produtos pesqueiros da America Latina (INFOPESCA) (2010) O mercado de pescado da região metropolitana de São Paulo. Série: O mercado do pescado nas grandes cidades latino-americanas. CFC/FSCFT/28. FAO Rome, Italy/INFOPESCA BrasilGoogle Scholar
  31. Ferreira PC, Piai KA, Takayanagui AMM, Segura-Muñoz SI (2008) Aluminum as a risk factor for Alzheimer's disease. Rev Latino-Am Enfermagem 16:151–157. doi:10.1590/S0104-11692008000100023 CrossRefGoogle Scholar
  32. Filoso S, Carmo JB, Mardegan SF, Lins SRM, Gomes TF, Martinelli LA (2015) Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals. Renew Sust Energ Rev 52:1847–1856. doi:10.1016/j.rser.2015.08.012 CrossRefGoogle Scholar
  33. Fregonesi BM, Suzuki MN, Machado CS, Tonani KAA, Fernandes APM, Monroe AA, Cervi MC, Segura-Muñoz S (2015) Emergent and re-emergent parasites in HIV-infected children: immunological and socio-environmental conditions that are involved in the transmission of Giardia spp. and Cryptosporidium spp. Rev Soc Bras Med Trop 48:753–758. doi:10.1590/0037-8682-0119-2015 CrossRefGoogle Scholar
  34. GEMG (Governo do Estado de Minas Gerais) (2011) Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável. Superintendência Regional de Regularização Ambiental Sul de Minas. Protocolo n° 0931728/2012. Licenciamento Ambiental n° 12756/2011/001/2011, Minas Gerais, MG, BrasilGoogle Scholar
  35. GEMG (Governo do Estado de Minas Gerais) (2013) Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável. Superintendência Regional de Regularização Ambiental Sul de Minas. PARECER ÚNICO n° 2035495/2013. 22/03/2013. Licença de Operação – Ampliação, Minas Gerais, MG, BrasilGoogle Scholar
  36. GEMG (Governo do Estado de Minas Gerais) (2014) Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável. Superintendência Regional de Regularização Ambiental Sul de Minas. PARECER ÚNICO N° 787671/2014 (SIAM), Minas Gerais, MG, BrasilGoogle Scholar
  37. Ghosh PK, Philip L (2006) Environmental significance of atrazine in aqueous systems and its removal by biological processes: an overview. Global NEST Journal 2:159–178Google Scholar
  38. Government of Brazil (2012) Brazilian Forest Code, Lei n° 12.651, de 25 de maio de 2012, Brasília, DF, BrasilGoogle Scholar
  39. Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307:136–145. doi:10.1016/j.tox.2012.06.009 CrossRefGoogle Scholar
  40. Hu E, Hu Y, Cheng H (2015) Performance of a novel microwave-based treatment technology for atrazine removal and destruction: sorbent reusability and chemical stability, and effect of water matrices. J Hazard Mater 299:444–452. doi:10.1016/j.jhazmat.2015.07.031 CrossRefGoogle Scholar
  41. IBAMA (2010) Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Produtos agrotóxicos e afins comercializados em 2009 no Brasil: uma abordagem ambiental. http://www.ibama.gov.br/sophia/cnia/livros/produtosagrotoxicoseafinscomercializadosem2009nobrasildigital.pdf. Accessed 09 Apr 2017
  42. IBGE (2010) Instituto Brasileiro de Geografia e Estatística. http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pof/2008_2009_encaa/defaulttabpdf_UF.shtm. Accessed 6 Apr 2017
  43. IBGE (2017) Instituto Brasileiro de Geografia e Estatística. http://www.cidades.ibge.gov.br. Accessed 6 Apr 2017.
  44. IPEADATA (2016) Instituto de Pesquisa Econômica Aplicada. http://www.ipeadata.gov.br/. Accessed 27 Apr 2016
  45. Jesus DV, Souza RTYB, Oliveira SR (2014) Consumo de pescado pela população de São Gabriel da Cachoeira-AM. Revista de Educação, Ciência e Tecnologia do IFAM 8:15–27Google Scholar
  46. Kahn H, Stralka K (2009) Estimated daily average per capita water ingestion by child and adult age categories based on USDA's 1994–1996 and 1998 continuing survey of food intakes by individuals. J Expo Sci Environ Epidemiol 19:396–404. doi:10.1038/jes.2008.29 CrossRefGoogle Scholar
  47. Kim KN, Lee MR, Choi YH, Lee BE, Hong YC (2016) Associations of blood cadmium levels with depression and lower handgrip strength in a community-dwelling elderly population: a repeated-measures panel study. J Gerontol A Biol Sci Med Sci 11:1525–1530. doi:10.1093/gerona/glw119 CrossRefGoogle Scholar
  48. Lenart-Boroń A, Wolanin A, Jelonkiewicz E, Żelazny M (2017) The effect of anthropogenic pressure shown by microbiological and chemical water quality indicators on the main rivers of Podhale, southern Poland. Environ Sci Pollut Res. doi:10.1007/s11356-017-8826-7
  49. Lima-Junior SE, Goitein R (2003) Ontogenetic diet shifts of a Neotropical catfish, Pimelodus maculatus (Siluriformes, Pimelodidae): an ecomorphological approach. Environ Biol Fish 68:73–79. doi:10.1023/A:1026079011647 CrossRefGoogle Scholar
  50. Machado CS, Alves RIS, Fregonesi BM, Beda CF, Suzuki MN, Trevilato RB, Nadal M, Domingo JL, Segura-Muñoz SI (2015) Integrating three tools for the environmental assessment of the Pardo River, Brazil. Environ Monit Assess 187:4788. doi:10.1007/s10661-015-4788-8 CrossRefGoogle Scholar
  51. Machado CS, Alves RIS, Fregonesi BM, Tonani KAA, Martinis BS, Sierra J, Nadal M, Domingo JL, Segura-Muñoz S (2016) Chemical contamination of water and sediments in the Pardo River, São Paulo, Brazil. Procedia Engineering 162:230–237. doi:10.1016/j.proeng.2016.11.046 CrossRefGoogle Scholar
  52. Medeiros RJ, Santos LMG, Freire AS, Santelli RE, Braga AMCB, Krauss TM, Jacob SC (2012) Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil. Food Control 23:535–541. doi:10.1016/j.foodcont.2011.08.027 CrossRefGoogle Scholar
  53. Nilsen TO, Ebbesson LOE, Handeland SO, Kroglund F, Finstad B, Angotzi AR, Stefansson SO (2013) Atlantic salmon (Salmo salar L.) smolts require more than two weeks to recover from acidic water and aluminium exposure. Aquat Toxicol 142–143:33–44. doi:10.1016/j.aquatox.2013.07.016 CrossRefGoogle Scholar
  54. Nobre CA, Marengo JA, Seluchi ME, Cuartas LA, Alves LM (2016) Some characteristics and impacts of the drought and water crisis in southeastern Brazil during 2014 and 2015. J Water Resource Prot 8:252–262. doi:10.4236/jwarp.2016.82022 CrossRefGoogle Scholar
  55. OECD/FAO (2015) OCDE-FAO Perspectivas Agrícolas 2015. OECD Publishing, París. doi:10.1787/agr_outlook-2015-es Google Scholar
  56. Pfeuffer RJ (2012) Pesticide surface water quality report. June 2012 sampling event South Florida water management district. https://www.sfwmd.gov/sites/default/files/documents/pt1206.pdf. Accessed 09 Apr 2017
  57. RAIS (2016) The Risk Assessment Information System. http://rais.ornl.gov/. Accessed on 24 Sept 2016
  58. Razzolini MTP, Lauretto MS, Hachichc EM, Sato MIZ, Nardocci AC (2016) Giardia and cryptosporidium infection risk by simultaneous exposure to drinking water. Microbial Risk Analysis 4:1–6. doi:10.1016/j.mran.2016.01.001 CrossRefGoogle Scholar
  59. Rovira J, Nadal M, Schuhmacher M, Domingo JL (2015) Human exposure to trace elements through the skin by direct contact with clothing: risk assessment. Environ Res 140:308–316. doi:10.1016/j.envres.2015.03.032 CrossRefGoogle Scholar
  60. Sass JB, Colangelo A (2006) European Union bans atrazine, while the United States negotiates continued use. Int J Occup Environ Health 2:260–267. doi:10.1179/oeh.2006.12.3.260 Google Scholar
  61. Sidhu KS (2003) Health benefits and potential risks related to consumption of fish or fish oil. Regul Toxicol Pharmacol 3:336–344. doi:10.1016/j.yrtph.2003.07.002 CrossRefGoogle Scholar
  62. SIGRH (2017) Situação dos recursos hídricos no Estado de São Paulo: 2015. Governo do Estado de São Paulo, Secretaria de Saneamento e Recursos Hídricos, Coordenadoria de Recursos Hídricos. http://www.sigrh.sp.gov.br/public/uploads/ckfinder/files/RSE_2016_Final_Recursos_Hidricos.pdf. Accessed 09 Apr 2017
  63. Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water treatment plant. Sci Total Environ 329:99–113. doi:10.1016/j.scitotenv.2004.03.015 CrossRefGoogle Scholar
  64. USEPA United States Environmental Protection Agency (1989) Risk Assessment Guidance for Superfund: volume 1—Human Health Evaluation Manual. PartA. Interim final. EPA/540/1–89/002. Office of Emergency and Remedial Response, Washington, DCGoogle Scholar
  65. USEPA United States Environmental Protection Agency (1996) Quantitative uncertainty analysis of Superfund residential risk pathway models for soil and groundwater: white paper. Office of Health and Environmental, Washington, DCGoogle Scholar
  66. USEPA United States Environmental Protection Agency (2006) Freshwater Screening Benchmarks, Washington, DC, USAGoogle Scholar
  67. USEPA United States Environmental Protection Agency (2007) Framework for Metals Risk Assessment, Washington, DC, USAGoogle Scholar
  68. USEPA United States Environmental Protection Agency (2008) Human Health Risk Assessment AMCO Chemical Superfund Site. Draft Report, Washington, DC, USAGoogle Scholar
  69. USEPA United States Environmental Protection Agency (2016) The Risk Assessment Information System. RAIS. http://rais.ornl.gov/. Accessed 24 Sept 2016.
  70. Vonberg D, Vanderborght J, Cremer N, Pütz T, Herbst M, Vereecken H (2014) 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Res 50:294–306. doi:10.1016/j.watres.2013.10.032 CrossRefGoogle Scholar
  71. Vymazal J, Švehla J (2013) Iron and manganese in sediments of constructed wetlands with horizontal subsurface flow treating municipal sewage. Ecol Eng 50:60–75. doi:10.1016/j.ecoleng.2012.04.02 CrossRefGoogle Scholar
  72. WHO World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. Washington, DCGoogle Scholar
  73. Yi YJ, Yang ZF, Zhang SH (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575–2585. doi:10.1016/j.envpol.2011.06.011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Carolina S. Machado
    • 1
  • Brisa M. Fregonesi
    • 1
  • Renato I. S. Alves
    • 1
  • Karina A. A. Tonani
    • 1
  • Jordi Sierra
    • 2
  • Bruno S. Martinis
    • 3
  • Beatriz S. Celere
    • 1
  • Montse Mari
    • 4
  • Marta Schuhmacher
    • 4
  • Martí Nadal
    • 2
  • Jose L. Domingo
    • 2
  • Susana Segura-Muñoz
    • 1
  1. 1.Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto, College of NursingUniversity of São PauloSão PauloBrazil
  2. 2.School of MedicineIISPV Universitat Rovira i VirgiliReusSpain
  3. 3.Faculty of Philosophy, Sciences and Literature of Ribeirão PretoUniversity of São PauloSão PauloBrazil
  4. 4.Departament d’Enginyeria QuímicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations