Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29834–29840 | Cite as

Nematicidal potential of hydrolates from the semi industrial vapor-pressure extraction of Spanish aromatic plants

  • Maria Fe Andrés
  • Azucena González-Coloma
  • Ruben Muñoz
  • Felipe De la Peña
  • Luis Fernando Julio
  • Jesus Burillo
Chemistry, Activity and Impact of Plant Biocontrol products
  • 370 Downloads

Abstract

The nematicidal activity of hydrolate by-products from the semi industrial vapor-pressure essential oil extraction of selected aromatic plant species (commercial: Lavandula × intermedia Emeric ex Loisel. var. super, Thymus vulgaris L., T. zygis Loefl ex L. and experimentally pre-domesticated: L. luisieri (Rozeira) Rivas-Martínez) was investigated against the root-knot nematode Meloidogyne javanica by in vitro and in vivo bioassays. Liquid-liquid extraction of hydrolates yielded the corresponding aqueous and organic fractions which were biological and chemically studied. Hydrolates from L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis showed strong in vitro nematicidal effects against M. javanica (J2 mortality and suppression of egg hatching). In the case of the Thymus species, the active components were found in the organic fraction, characterized by thymol as major component. Conversely, the nematicidal activity of L. × intermedia var. super and L. luisieri remained in the corresponding aqueous fractions. In vivo tests on tomato seedlings at sublethal doses of the hydrolates/organic fractions induced a significant reduction of nematode infectivity. In pot experiments, all hydrolates tested on tomato plants significantly affect the infection frequency and reproduction rate of the nematode population. This study demonstrates that L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis hydrolates could be an exploitable source of potential waste protection products on root-knot nematodes.

Keywords

Nematicidal activity Lavandin Lavandula luisieri Thymus vulgaris Thymus zygis Root-knot nematode Water residue Organic fraction 

Notes

Acknowledgements

This work has been supported by grants CTQ2012-38219-C03-01 and CTQ2015-64049-C3-1-R (MINECO/FEDER) (Spain), and JAE-CSIC (pre-doctoral fellowship to L.F. Julio). We thank S. Cruz for technical assistance.

References

  1. Aazza S, Lyoussi B, Miguel M (2011) Antioxidant activity of some Morrocan hydrosols. J Med Plants Res 5:6688–6696Google Scholar
  2. Aazza S, Lyoussi B, Miguel M (2012) Antioxidant activity of eight hydrosols from Morocco. Asian J Plant Sci 11:137–142CrossRefGoogle Scholar
  3. Andrés MF, González-Coloma A, Sanz J, Burillo J, Sainz P (2012) Nematicidal activity of essential oils: a review. Phytochem Rev 11:371–390CrossRefGoogle Scholar
  4. Baydar H, Kineci S (2009) Scent composition of essential oil, concrete, absolute and hydrosol from Lavandin (Lavandula × intermedia Emeric ex Loisel.) J Essen Oil Bear Plants 12:131–136CrossRefGoogle Scholar
  5. Boyraz N, Özcan M (2005) Antifungal effect of some spice hydrosols. Fitoterapia 76:661–665CrossRefGoogle Scholar
  6. Burillo J, Garcıa-Vallejo MC (2003) Investigacion y Experimentacion de Plantas Aromaticas y Medicinales en Aragon. Cultivo, Transformacion y Analıtica. Ed. propagation activities of thyme red and white. Gobierno de AragonGoogle Scholar
  7. Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 14:142–143Google Scholar
  8. Choi IH, Kim J, Shin SC, Park IK (2007) Nematicidal activity of monoterpenoids against the pine wood nematode (Bursaphelenchus xylophilus). Russ J Nematol 15:35–40Google Scholar
  9. Ferley J, Poutignat N, Azzopard Y, Balducci F (1988) Aromathérapie préventive des surinfections chez les bronchiteux chroniques: evaluation statistique en milieu institutionel: contre placebo. Phytothérapie 24:8Google Scholar
  10. García-Risco MR, Vicente G, Reglero G, Fornari T (2011) Fractionation of thyme (Thymus vulgaris L.) by supercritical fluid extraction and chromatography. J Supercrit Fluids 55:949–954CrossRefGoogle Scholar
  11. Ghorbani R, Wilcockson S, Koochek A, Leifert C (2008) Soil management for sustainable crop disease control: a review. Environ Chem Lett 6:149–162CrossRefGoogle Scholar
  12. Gonçalves MJ, Cruz MT, Cavaleiro C, Lopes MC, Salgueiro L (2010) Chemical, antifungal and cytotoxic evaluation of the essential oil of Thymus zygis subsp. sylvestris. Ind Crop Prod 32:70–75CrossRefGoogle Scholar
  13. González-Coloma A, Delgado F, Rodilla JM, Silva L, Sanz J, Burillo J (2011) Chemical and biological profiles of Lavandula luisieri essential oils from western Iberia Peninsula populations. Biochem Syst Ecol 39:1–8CrossRefGoogle Scholar
  14. Höferl M, Buchbauer G, Jirovetz L, Schmidt E, Stoyanova A, Denkova Z et al (2009) Correlation of antimicrobial activities of various essential oils and their main aromatic volatile constituents. J Essent Oil Res 21:459–463CrossRefGoogle Scholar
  15. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp, including a new technique. Plant Dis 57:1025–1028Google Scholar
  16. Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant EOs in agriculture, industry and consumer products. Phytochem Rev 10:197–204CrossRefGoogle Scholar
  17. Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961CrossRefGoogle Scholar
  18. Jordán MJ, Martínez RM, Martínez C, Moñino I, Sotomayor JA (2009) Polyphenolic extract and essential oil quality of Thymus zygis ssp. gracilis shrubs cultivated under different watering levels. Ind Crop Prod 29:145–153CrossRefGoogle Scholar
  19. Joy PP, Thomas J, Mathew S, Jose G, Joseph J (2001) Aromatic plants. In: Bose TK, Kabir J, Das P, Joy PP (eds) Tropical horticulture, vol 2. Naya Prokash, Calcutta, pp 633–733Google Scholar
  20. Julio LF, Barrero AF, Herrador del Pino MM, Arteaga JF, Burillo J, Andres MF, Díaz CE, González-Coloma A (2016) Phytotoxic and nematicidal components of Lavandula luisieri. J Nat Prod 2:261–266CrossRefGoogle Scholar
  21. Julio LF, González-Coloma A, Burillo J, Diaz CE, Andrés MF (2017) Nematicidal activity of the hydrolate byproduct from the semi industrial vapor pressure extraction of domesticated Artemisia absinthium against Meloidogyne javanica. Crop Prot 94:33–37CrossRefGoogle Scholar
  22. Lavoine-Hanneguelle S, Casabianca H (2004) New compounds from the essential oil and absolute of Lavandula luisieri L. J Essent Oil Res 16:445–448CrossRefGoogle Scholar
  23. Lis-Balchin M, Steyrl H, Krenn E (2003) The comparative effect of novel Pelargonium essential oils and their corresponding hydrosols as antimicrobial agents in a model food system. Phytother Res 17:60–65CrossRefGoogle Scholar
  24. Mookherjee BD, Wilson RA, Trenkle RW, Zampino MJ, Sands KP (1989) New dimensions in flavor research. ACS Symp Ser 388:176–187CrossRefGoogle Scholar
  25. Ntalli NG, Ferrari F, Giannakou I, Menkissoglu-Spiroudi U (2010) Phytochemistry and nematicidal activity of the EOs from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J Agric Food Chem 58:7856–7863CrossRefGoogle Scholar
  26. Ozcan MM, Arslan D, Aydar AO (2008) The use of the oregano (Origanum vulgare L.) essential oil and hydrosol in green olive fermentation. Braz Arch Biol Technol 51:601–605CrossRefGoogle Scholar
  27. Paolini J, Leandri C, Desjobert J-M, Barboni T, Costa J (2008) Comparison of liquid-liquid extraction with headspace methods for the characterization of volatile fractions of commercial hydrolats from typically Mediterranean species. J Chromatogr A 1193:37–49CrossRefGoogle Scholar
  28. Pombal S, Rodrigues CF, Araújo JP, Rocha PM, Rodilla JM, Diez D, Granja AP, Gomes AC, Silva LA (2016) Antibacterial and antioxidant activity of Portuguese Lavandula luisieri (Rozeira) Rivas-Martinez and its relation with their chemical composition. Springer Plus 5:1711CrossRefGoogle Scholar
  29. Prakash V (1990) Leafy spices. CRC Press, Boca RatonGoogle Scholar
  30. Prusinowska R, Śmigielski K, Stobiecka A, Kunicka-Styczyńska A (2016) Hydrolates from lavender (Lavandula angustifolia)—their chemical composition as well as aromatic, antimicrobial and antioxidant properties. Nat Prod Res 30:386–393CrossRefGoogle Scholar
  31. Rota MC, Herrera A, Martinez RM, Sotomayor JA, Jordan MJ (2008) Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 19:681–687CrossRefGoogle Scholar
  32. Sağdiç O, Özcan M (2003) Antibacterial activity of Turkish spice hydrosols. Food Control 14:141–143CrossRefGoogle Scholar
  33. Schneider-Orelli O (1947) Entomologisches Praktikum: Einführung in die landund forstwirtschaftliche. Insektenkunde Sauerländer & Co, AarauGoogle Scholar
  34. Soliman KM, Badeaa RI (2002) Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol 40:1669–1675CrossRefGoogle Scholar
  35. Sotomayor JA, Martinez RM, Garcia AJ, Jordan MJ (2004) Thymus zygis subsp. Gracilis: watering level effect on phytomass production and essential oil quality. J Agric Food Chem 52:5418–5424CrossRefGoogle Scholar
  36. Thompson JD, Chalchat J-C, Michet A, Linhart YB, Ehlers B (2003) Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J Chem Ecol 29:859–880CrossRefGoogle Scholar
  37. Ulusoy S, Bosgelmez-Tinaz G, Secilmis-Canbay H (2009) Tocopherol, carotene, phenolic contents and antibacterial properties of rose essential oil, hydrosol and absolute. Curr Microbiol 59:554–558CrossRefGoogle Scholar
  38. Usano-Alemany J, Herraiz D, Cuadrado J, de Benito B, Sánchez O, Palá-Paúl J (2011) Ecological production of lavenders in Cuenca province (Spain). A study of yield production and quality of the essential oils. Bot Complutensis 35:147–152Google Scholar
  39. Verdejo-Lucas S, Talavera M, Andrés MF (2012) Virulence response to the Mi. 1 gene of Meloidogyne populations from tomato in greenhouses. Crop Prot 39:97–105CrossRefGoogle Scholar
  40. Zuzarte M, Gonçalves MJ, Cruz MT, Cavaleiro C, Canhoto J, Vaz S, Pinto E, Salgueiro L (2012) Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem 135:1505–1510CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Maria Fe Andrés
    • 1
  • Azucena González-Coloma
    • 1
  • Ruben Muñoz
    • 1
  • Felipe De la Peña
    • 1
  • Luis Fernando Julio
    • 1
  • Jesus Burillo
    • 2
  1. 1.Instituto de Ciencias Agrarias. CSICMadridSpain
  2. 2.CITAZaragozaSpain

Personalised recommendations