Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economic-environmental assessment


A holistic assessment procedure has been used in this study for comparing conventional activated sludge (CAS) and membrane bioreactor (MBR) processes for the treatment of municipal wastewater. Technical, social, administrative, economic and environmental impacts have been evaluated based on 1 year of operational data from three full-scale lines (one MBR and two CAS) working in parallel in a large municipal treatment plant. The comparative assessment evidences a slight advantage of the conventional process in the studied case, essentially due to lower costs, complexity and energy consumption. On the other hand, the MBR technology has a better social acceptance and similar overall environmental footprint. Although these results are influenced by site-specific parameters and cannot be generalized, the assessment procedure allowed identifying the most important factors affecting the final scores for each technology and the main differences between the compared technologies. Local conditions can affect the relative importance of the assessed impacts, and the use of weighting factors is proposed for better tailoring the comparative assessment to the local needs and circumstances. A sensitivity analysis on the weighted final scores demonstrated how local factors are very important and must be carefully evaluated in the decision making process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Achillas C, Moussiopoulos N, Karagiannidis A, Banias G, Perkoulidis G (2013) The use of multi-criteria decision analysis to tackle waste management problems: a literature review. Waste Manag Res 31(2):115–129. doi:10.1177/0734242X12470203

  2. Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45:2473–2484. doi:10.1016/j.watres.2011.01.026

  3. Bertanza G, Papa M, Canato M, Collivignarelli MC, Pedrazzani R (2014) How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies. J Environ Manag 137:86–92. doi:10.1016/j.envman.2014.02.002

  4. Bertanza G, Canato M, Laera G, Tomei MC (2015) Methodology for technical and economic assessment of advanced routes for sludge processing and disposal. Environ Sci Pollut Res 22:7190–7202. doi:10.1007/s11356-014-3088-0

  5. Bertanza G, Baroni P, Canato M (2016) Ranking sewage sludge management strategies by means of decision support systems: a case study. Resour Conserv Recycl 110:1–15. doi:10.1016/j.resconrec.2016.03.011

  6. Brepols C, Schafer H, Engelhardt N (2010) Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications. Water Sci Technol 61(10):2461–2468. doi:10.2166/wst.2010.179

  7. Camacho-Munoz D, Martin J, Santos JL, Alonso E, Aparicio I, De la Torre T, Rodriguez C, Malfeito JJ (2012) Effectiveness of three configurations of membrane bioreactors on the removal of priority and emergent organic compounds from wastewater: comparison with conventional wastewater treatments. J Environ Monit 14:1428–1436. doi:10.1039/c2em00007e

  8. Campanelli M, Foladori P, Vaccari M (2013) Consumi elettrici ed efficienza energetica nel trattamento delle acque reflue (Energy consumptions and electric efficiency in the WWTPs). Maggioli Editore. ISBN: 9788838783685

  9. Chiellini C, Munz G, Petroni G, Lubello C, Mori G, Verni F, Vannini C (2013) Characterization and comparison of bacterial communities selected in conventional activated sludge and membrane bioreactor pilot plants: a focus on Nitrospira and Planctomycetes bacterial phyla. Curr Microbiol 67(1):77–90. doi:10.1007/s00284-013-0333-6

  10. De Luca G, Sacchetti R, Leoni E, Zanetti F (2013) Removal of indicator bacteriophages from municipal wastewater by a full-scale membrane bioreactor and a conventional activated sludge process: implications to water reuse. Bioresour Technol 129:526–531. doi:10.1016/j.biortech.2012.11.113

  11. EC-JRC (2010) ILCD Handbook - International Reference Life Cycle Data System, European Union

  12. EC-JRC (2011) ILCD Handbook - International Reference Life Cycle Data System - Recommmendation for Life Cycle Impact Assessment in the European context, European Union

  13. Fenu A, Roels J, Wambecq T, De Gussem K, Thoeye C, De Gueldre G, Van De Steene B (2010) Energy audit of a full scale MBR system. Desalination 262:121–128. doi:10.1016/j.desal.2010.05.057

  14. Francy DS, Stelzer EA, Bushon RN, Brady AMG, Williston AG, Riddell KR, Borchardt MA, Spencer SK, Gellner TM (2012) Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Water Res 46:4164–4178. doi:10.1016/j.watres.2012.04.044

  15. Gil JA, Túa L, Rueda A, Montaño B, Rodríguez M, Prats D (2010) Monitoring and analysis of the energy cost of an MBR. Desalination 250:997–1001. doi:10.1016/j.desal.2009.09.089

  16. Gnirss R, Dittrich J (2001) Microfiltration of municipal wastewater for disinfection and advanced phosphorus removal: results from trials with different small-scale pilot plants. Water Environ Res 72(5):602–609. doi:10.2175/106143000X138184

  17. Gonzalez S, Petrovic M, Barcelò D (2007) Removal of a broad range of surfactants from municipal wastewater—comparison between membrane bioreactor and conventional activated sludge treatment. Chemosphere 67:335–343. doi:10.1016/j.chemosphere.2006.09.056

  18. Hai FI, Yamamoto K, Lee CH (2014) Membrane Biological Reactors. IWA Publishing, London

  19. Hospido A, Sanchez I, Rodriguez-Garcia G, Iglesias A, Buntner D, Reif R, Moreira MT, Feijoo G (2012) Are all membrane reactors equal from an environmental point of view? Desalination 285:263–270

  20. Ioannou-Ttofa L, Foteinis S, Chatzisymeon E, Fatta-Kassinos D (2016) The environmental footprint of a membrane bioreactor treatment process through life cycle analysis. Sci Total Environ 568:306–318

  21. Judd S, Judd C (2011) The MBR book. Principles and applications of membrane bioreactors for water and wastewater treatment. 2nd Edition, Elsevier Ltd.. ISBN: 9780080966823

  22. Lazarova V, Martin Ruel S, Berillon B, Dauthuille P (2012) The role of MBR technology for the improvement of environmental footprint of wastewater treatment. Water Sci Technol 66(10):2056–2064

  23. Lesjean B, Tazi-Pain A, Thaure D, Moeslang H, Buisson H (2011) Ten persistent myths and the realities of membrane bioreactor technology for municipal applications. Water Sci Technol 63(1):32–39. doi:10.2166/wst.2011.005

  24. Lindtner S, Schaar H, Kroiss H (2008) Benchmarking of large municipal wastewater treatment plants treating over 100,000 PE in Austria. Water Sci Technol 57(10):1487–1493. doi:10.2166/wst.2008.214

  25. Nielsen PH, Mielczarek AT, Kragelund C, Nielsen JL, Saunders AM, Kong Y, Hansen AA, Vollertsen J (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res 44:5070–5088. doi:10.1016/j.watres.2010.07.036

  26. Radjenovic J, Petrovic M, Barcelo M (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–841. doi:10.1016/j.watres.2008.11.043

  27. Sahar E, Messalem R, Cikurel H, Aharoni A, Brenner A, Godehardt M, Jekel M, Ernst M (2011) Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR). Water Res 45:4827–4836. doi:10.1016/j.watres.2011.06.023

  28. Saunders AM, Larsen P, Nielsen PH (2013) Comparison of nutrient-removing microbial communities in activated sludge from full-scale MBRs and conventional plants. Water Sci Technol 68(2):366–371. doi:10.2166/wst.2013.183

  29. Sun J, Xiao K, Yan X, Liang P, Shen Y-X, Zhu N, Huang X (2015) Membrane bioreactor vs. oxidation ditch: full-scale long-term performance related with mixed liquor seasonal characteristics. Process Biochem 50:2224–2233. doi:10.1016/j.procbio.2015.09.010

  30. Svanström M, Bertanza G, Bolzonella D, Canato M, Collivignarelli C, Heimersson S, Laera G, Mininni G, Peters G, Tomei MC (2014) Technical, economic and environmental benchmarking of advanced sludge processing routes. Water Sci Technol 69:2407–2416. doi:10.2166/wst.2014.092

  31. Tomei MC, Bertanza G, Canato M, Heimersson S, Laera G, Svanström M (2015) Techno-economic and environmental assessment of upgrading alternatives for sludge stabilization in municipal wastewater treatment plants. J Clean Prod 112:3106–3115. doi:10.1016/ j.jclepro.2015.10.017

  32. US EPA - Environmental Protection Agency (2014) Catalog of CHP technologies. U.S. Environmental Protection Agency, Washington

  33. Wozniak T (2012) Comparison of a conventional municipal plant, and an MBR plant with and without MPE. Desalin Water Treat 47:341–352. doi:10.1080/19443994.2012.672186

Download references


Authors are grateful to the managing staff of the Verziano-Brescia (Italy) WWTP (A2A S.p.A). A special thanks also to Eng. Patrizia Quinzani for her contribution in the first phase of data collection and processing.

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Giorgio Bertanza: research coordination and supervision and techno-economic assessment.

Matteo Canato: techno-economic assessment.

Mentore Vaccari: WWTP monitoring data collection and literature review.

Giuseppe Laera: mass balance calculations.

Magdalena Svanström and Sara Heimersson: environmental assessment.

Correspondence to Giorgio Bertanza.

Additional information

Responsible editor: Bingcai Pan

Electronic supplementary material


(DOCX 182 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bertanza, G., Canato, M., Laera, G. et al. A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economic-environmental assessment. Environ Sci Pollut Res 24, 17383–17393 (2017). https://doi.org/10.1007/s11356-017-9409-3

Download citation


  • Comparison
  • Costs
  • Environmental impact
  • Multicriteria analysis
  • Score
  • Technical aspects