Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Preparation of La-modified magnetic composite for enhanced adsorptive removal of tetracycline

  • 195 Accesses

  • 4 Citations

Abstract

Composite adsorbents usually outperform single component adsorbents as they could combine the properties and advantages of each component. In this research, rare earth element Lanthanum was introduced into magnetic substrate by a method of chemical co-precipitation to enhance its adsorption capability. It was found that the La-modified magnetic composite with a presumed La and Fe3O4 molar ratio at 1:50 had a better adsorption performance for tetracycline than the magnetic adsorbents at other molar ratios. The La-modified magnetic composite was characterized by scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results showed that the magnetic adsorbent was nano-sized, and the introduction of La did not change the crystal structure of magnetic substrate. The adsorptive removal of tetracycline was favorable at neutral pH conditions. Kinetic experiments indicated that most of the uptake occurred within the initial 120 min. Chemisorption occurred in the process while rate-determining step might be diffusive in nature. An empirical model (Langmuir model) was applied in this paper, and fitting result indicates that the q max value of the magnetic composite reached as much as 145.9 mg/g for the uptake of tetracycline at 298 K. The above indicates that method of La doping could significantly enhance the adsorption capability of an intentionally designed composite adsorbent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aharoni C, Sparks DL, Levinson S, Revina I (1991) Kinetics of soil chemical reactions: relationships between empirical equations and diffusion models. Soil Sci Soc am J 55:1307–1312

  2. Cheung CW, Porter JF, Mckay G (2000) Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep Purif Technol 19:55–64

  3. Figueroa RA, Leonard A, MacKay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483

  4. Freundlich HMF (1906) Uber die adsorption in lasungen. J Phys Chem 57:385–470

  5. Ho YS, McKay G (1999) Pseudo-second-order model for sorption process. Process Biochem 34:451–465

  6. Hu XL, Yu Jimmy C (2006) Microwave-assisted synthesis of a superparamagnetic surface-functionalized porous Fe3O4/C nanocomposite. Chem Asian J 1:605–610

  7. Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS (2005) Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39:5816–5823

  8. Kithome M, Paul JW, Lavkulich LM, Bomke AA (1988) Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Sci Soc Am 62:622–629

  9. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlinga 24:1–39

  10. Langmuir I (1916) Kinetic model for the sorption of dye aqueous solution by clay-wood sawdust mixture. J am Chem Soc 38:2221–2295

  11. Li GT, Wong KH, Zhang XW, Hu C, Yu Jimmy C, Chan RCY, Wong PK (2009) Degradation of Acid Orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere 76:1185–1191

  12. Li GT, Chen D, Zhao WG, Zhang XW (2015a) Efficient adsorption behavior of phosphate on La-modified tourmaline. J Environ Chem Eng 3:515–522

  13. Li GT, Feng YM, Zhu WY, Zhang XW (2015b) Enhanced adsorptive performance of tetracycline antibiotics on lanthanum modified diatomite. Korean J Chem Eng 32:2109–2115

  14. Liese HC (1967) An infrared absorption analysis of magnetite. Am Mineral 52:1198–1205

  15. Liu HJ, Yang Y, Kang J, Fan MH, Qu JH (2012) Removal of tetracycline from water by Fe-Mn binary oxide. J Environ Sci-China 24:242–247

  16. Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

  17. Meng JH, Yang GQ, Yan LM, Wang XY (2005) Synthesis and characterization of magnetic nanometer pigment Fe3O4. Dyes Pigments 66(1):09–113

  18. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden Prairie

  19. Pavlatou A, Polyzopouls NA (1988) The role of diffusion in the kinetics of phosphate desorption: the relevance of the Elovich equation. Eur J Soil Sci 39:425–436

  20. Qu JH (2008) Research progress of novel adsorption processes in water purification. J Environ Sci 20:1–13

  21. Velsen AFM, Vos G (1991) High gradient magnetic separation technique for wastewater treatment. Water Sci Technol 24:19–203

  22. Xie J, Wang Z, Lu SY, Wu DY, Zhan ZJ, Kong HN (2014) Removal and recovery of phosphate from water by lanthanum hydroxide materials. Chem Eng J 254:163–170

  23. Yang X, Flowers RC, Weinberg HS, Singer PC (2011) Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water res 45:5218–5228

  24. Zhang GS, Qu JH, Liu HJ, Liu RP, Li GT (2007) Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41:4613–4619

  25. Zheng YM, Lim SF, Chen JP (2009) Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal. J Colloid Interface Sci 338:22–29

Download references

Acknowledgements

The authors thank for the finical support from the National Natural Science Foundation of China (Grant No. 51378205) and the Foundation for University Key Youth Teacher by Henan Province of China (2013GGJS-088).

Author information

Correspondence to Guoting Li.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mi, X., Wang, M., Zhou, F. et al. Preparation of La-modified magnetic composite for enhanced adsorptive removal of tetracycline. Environ Sci Pollut Res 24, 17127–17135 (2017). https://doi.org/10.1007/s11356-017-9373-y

Download citation

Keywords

  • Lanthanum
  • Magnetic composite
  • Tetracycline
  • Adsorption
  • Modeling