Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu

  • Parent Zihalirwa Kulimushi
  • Géant Chuma Basime
  • Gustave Mushagalusa Nachigera
  • Philippe Thonart
  • Marc Ongena
Chemistry, Activity and Impact of Plant Biocontrol products

Abstract

In the province of South Kivu (Democratic Republic of Congo), warm and humid climatic conditions favor the development and spreading of phytopathogens. The resulting diseases cause important losses in production both in crop and after harvest. In this study, we wanted to evaluate the potential of Bacillus amyloliquefaciens as biocontrol agent to fight some newly isolated endemic fungal pathogens infesting maize. The strain S499 has been selected based on its high in vitro antagonistic activity correlating with a huge potential to secrete fungitoxic lipopeptides upon feeding on maize root exudates. Biocontrol activity of S499 was further tested on infected plantlets in growth chamber and on plants grown under field conditions over an entire cropping period. We observed a strong protective effect of this strain evaluated at two different locations with specific agro-ecological conditions. Interestingly, disease protection was associated with higher yields and our data strongly suggest that, in addition to directly inhibit pathogens, the strain may also act as biofertilizer through the solubilization of phosphorus and/or by producing plant growth hormones in the rhizosphere. This work supports the hope of exploiting such technologically advantageous bacilli for the sake of sustainable local production of this important crop in central Africa.

Keywords

Bacillus amyloliquefaciens Antifungal activity Biological control South-Kivu Maize Cyclic lipopeptides 

Notes

Acknowledgments

This study was supported by the scholarship program Brot für die Welt-Germany in the context of partnership with the Evangelical University in Africa of Bukavu, eastern of democratic republic of Congo. The authors also thank Laurent Franzil for UPLC-MS analyzes. M. Ongena is Senior Research Associate at the F.R.S.-FNRS (Fonds National de la Recherche Scientifique) in Belgium.

References

  1. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8:1–12. doi:10.1186/1475-2859-8-63 CrossRefGoogle Scholar
  2. Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg, pp 41–76CrossRefGoogle Scholar
  3. Budiharjo A, Chowdhury SP, Dietel K, Beator B, Dolgova O, Fan B, Borriss R (2014) Transposon mutagenesis of the plant-associated Bacillus amyloliquefaciens sp. plantarum FZB42 revealed that the nfrA and RBAM17410 genes are involved in plant-microbe-interactions. PLoS One 9:1–13. doi:10.1371/journal.pone.0098267 CrossRefGoogle Scholar
  4. Cavaglieri L, Orlando J, Rodríguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748–754. doi:10.1016/j.resmic.2005.03.001 CrossRefGoogle Scholar
  5. Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens. Microb Biotechnol 8:281–295. doi:10.1111/1751-7915.12238 CrossRefGoogle Scholar
  6. Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant-Microbe Interact 27:87–100. doi:10.1094/MPMI-09-13-0262 CrossRefGoogle Scholar
  7. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37. doi:10.1016/j.jbiotec.2008.10.011 CrossRefGoogle Scholar
  8. Chitarra GS, Breeuwer P, Nout MJR, Van Aelst AC, Rombouts FM, Abee T (2003) An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J Appl Microbiol 94:159–166. doi:10.1046/j.1365-2672.2003.01819.x CrossRefGoogle Scholar
  9. Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol 6:1–12. doi:10.3389/fmicb.2015.00780 CrossRefGoogle Scholar
  10. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005 CrossRefGoogle Scholar
  11. Debois D, Fernandez O, Franzil L, Jourdan E, de Brogniez A, Willems L, Ongena M (2015) Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environ Microbiol Rep 7:570–582. doi:10.1111/1758-2229.12286 CrossRefGoogle Scholar
  12. Debois D, Jourdan E, Smargiasso N, Thonart P, De Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86:4431–4438. doi:10.1021/ac500290s CrossRefGoogle Scholar
  13. Debois D, Ongena M, Cawoy H, De Pauw E (2013) MALDI-FTICR MS imaging as a powerful tool to identify Paenibacillus antibiotics involved in the inhibition of plant pathogens. J Am Soc Mass Spectrom 24:1202–1213. doi:10.1007/s13361-013-0620-2 CrossRefGoogle Scholar
  14. Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus velezensis, Bacillus amyloliquefaciens subsp. plantarum and Bacillus oryzicola are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 66:1212–1217. doi:10.1099/ijsem.0.000858 Google Scholar
  15. Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359. doi:10.1146/annurev.phyto.43.032904.092924 CrossRefGoogle Scholar
  16. García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274. doi:10.1111/1751-7915.12028 CrossRefGoogle Scholar
  17. Gond SK, Bergen MS, Torres MS, White JF (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. doi:10.1016/j.micres.2014.11.004 CrossRefGoogle Scholar
  18. Hanene R, Abdeljabbar H, Marc R, Abdellatif B, Ferid L, Najla SZ (2012) Biological control of Fusarium foot rot of wheat using fengycin-producing Bacillus subtilis isolated from salty soil. Afr J Biotechnol 11:8464–8475. doi:10.5897/AJB11.2887 Google Scholar
  19. Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456–468. doi:10.1371/journal.pone.0106041 CrossRefGoogle Scholar
  20. Kwon J, Kang S, Kim J, Park C (2001) Rhizopus soft rot on cherry tomato caused by Rhizopus stolonifer in Korea. J Microbiol 29:176–178. doi:10.4489/MYCO.2006.34.3.151 Google Scholar
  21. Leclère V, Béchet M, Adam A, Wathelet B, Ongena M, Thonart P, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organisms antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584. doi:10.1128/AEM.71.8.4577 CrossRefGoogle Scholar
  22. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918 CrossRefGoogle Scholar
  23. Manjula K, Podile AR (2005) Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Indian J Exp Biol 43:892–896Google Scholar
  24. Mehta P, Walia A, Chauhan A, Kulshrestha S, Shirkot CK (2013) Phosphate solubilisation and plant growth promoting potential by stress tolerant Bacillus sp. isolated from rhizosphere of apple orchards in trans Himalayan region of Himachal Pradesh. Ann Appl Biol 163:430–443. doi:10.1111/aab.12077 CrossRefGoogle Scholar
  25. Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp: Exploiting bacterial traits for crop protection. A Van Leeuw J Microb 92:367. doi:10.1007/s10482-007-9167-1 CrossRefGoogle Scholar
  26. Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C, Ongena M, Pertot I (2016) Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499,a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. J Biotechnol 238:56–59. doi:10.1016/j.jbiotec.2016.09.013 CrossRefGoogle Scholar
  27. Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629. doi:10.1046/j.1365-2672.2001.01290.x CrossRefGoogle Scholar
  28. Nagorska K, Bikowski M, Obuchowskji M (2007) Multicellular behaviourand production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54:495–508Google Scholar
  29. Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191. doi:10.1111/j.1574-6941.2011.01208 CrossRefGoogle Scholar
  30. Nihorimbere V, Ongena M, Cawoy H, Brostaux Y, Kakana P, Jourdan E, Thonart P (2010) Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: reduction of local Fusarium disease and growth promotion. Afr J Microbiol Res 4:1135–1142Google Scholar
  31. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi:10.1016/j.tim.2007.12.009 CrossRefGoogle Scholar
  32. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. doi:10.1111/j.1462-2920.2006.01202.x CrossRefGoogle Scholar
  33. Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. doi:10.1016/j.copbio.2010.12.003 CrossRefGoogle Scholar
  34. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi:10.1146/annurev-phyto-082712-102340 CrossRefGoogle Scholar
  35. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. doi:10.1111/j.1574-6976.2010.00221.x CrossRefGoogle Scholar
  36. Ravensberg WJ (2015) Commercialisation of microbes: present situation and future prospects. In: Lugtenberg B (ed) Principles of Plant-microbe interactions. Microbes for sustainable agriculture. Springer International Publishing Switzerland, Heidelberg, p 309–317Google Scholar
  37. Reid LM, Zhu X, Canada. Agriculture et agroalimentaire Canada. (2005) Criblage du maïs quant à sa résistance aux maladies courantes au Canada. Agriculture et agroalimentaire CanadaGoogle Scholar
  38. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi:10.1016/S0734-9750(99)00014-2 CrossRefGoogle Scholar
  39. Romero D, De Vicente A, Olmos JL, Dávila JC, Pérez-García A (2007) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 103:969–976. doi:10.1111/j.1365-2672.2007.03323 CrossRefGoogle Scholar
  40. Rückert C, Blom J, Chen X, Reva O, Borriss R (2011) Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 155:78–85. doi:10.1016/j.jbiotec.2011.01.006 CrossRefGoogle Scholar
  41. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932CrossRefGoogle Scholar
  42. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. doi:10.1111/j.1365-2958.2005.04587.x CrossRefGoogle Scholar
  43. Sweets LE, Wright S (2008) Integrated pest management. Corn diseases. Plant protection programs. College of Agriculture, Food and Natural Resources. University of Missouri, Columbia. 1–23Google Scholar
  44. Tollens E (2003) L’état actuel de la sécurité alimentaire en R.D. Congo: Diagnostic et perspectives. Working Paper, n°77, Département d'Economie Agricole et de l'Environnement, Katholieke Universiteit Leuven, 6pGoogle Scholar
  45. Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160. doi:10.1111/j.1365-2672.2004.02252 CrossRefGoogle Scholar
  46. Velmurugan N, Choi MS, Han SS, Lee YS (2009) Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: in vitro and in vivo experiments. J Microbiol 47:385–392. doi:10.1007/s12275-009-0018-9 CrossRefGoogle Scholar
  47. Wu L, Wu HJ, Qiao J, Gao X, Borriss R (2015) Novel routes for improving biocontrol activity of Bacillus-based bioinoculants. Front Microbiol 6:1–13. doi:10.3389/fmicb.2015.01395 Google Scholar
  48. Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132:609–619. doi:10.1007/s10658-011-9905-0 CrossRefGoogle Scholar
  49. Yildirim I, Turhan H, Özgen B (2010) The effects of head rot disease (Rhizopus stolonifer) on sunflower genotypes at two different growth stages. Turk J Field Crops 15:94–98Google Scholar
  50. Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97:9525–9534. doi:10.1007/s00253 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Microbial Processes and Interactions Laboratory, Faculty Gembloux Agro-BioTechUniversity of LiègeGemblouxBelgium
  2. 2.Laboratory of Biotechnology and Molecular Biology, Faculty of Agricultural and Environmental SciencesUniversité Evangélique en AfriqueBukavuDemocratic Republic of the Congo
  3. 3.Laboratory of Ecophysiology and Plants Nutrition, Faculty of Agricultural and Environmental SciencesUniversité Evangélique en AfriqueBukavuDemocratic Republic of the Congo

Personalised recommendations