Environmental Science and Pollution Research

, Volume 24, Issue 20, pp 16806–16814 | Cite as

Genotoxicity in adult residents in mineral coal region—a cross-sectional study

  • Edlaine Acosta Da Silva Pinto
  • Edariane Menestrino Garcia
  • Krissia Aparecida de Almeida
  • Caroline Feijó Lopes Fernandes
  • Ronan Adler Tavella
  • Maria Cristina Flores Soares
  • Paulo Roberto Martins Baisch
  • Ana Luíza Muccillo-Baisch
  • Flavio Manoel Rodrigues da Silva Júnior
Research Article

Abstract

The present study assessed the DNA damage in environmentally exposed volunteers living in seven municipalities in an industrial coal region, through the use of the comet assay with blood cells and the micronucleus test with buccal cells. Blood and buccal smears were collected from 320 male volunteers living in seven cities inserted in a coal region. They were ages of 18 and 50 years and also completed a questionnaire intended to identify factors associated with DNA damage through a Poisson regression analysis. The comet assay detected significant differences in DNA damage in volunteers from different municipalities, and neighboring cities (Pedras Altas, Aceguá, and Hulha Negra) had a higher level of DNA damage in relation to control city. Some of the risk factors associated with identified DNA lesions included residence time and life habits. On the other hand, the micronucleus test did not identify differences between the cities studied, but the regression analysis identified risk factors such as age and life habits (consumption of mate tea and low carbohydrates diet). We conclude that there are differences in the DNA damage of volunteers from different cities of the carboniferous region, but the presence of micronuclei in the oral mucosa does not differ between the same cities. Furthermore, we alert that some related factors may increase the risk of genotoxicity, such as residence location and time, and living and food habits. Finally, we suggest the need for continuous biomonitoring of the population, as well as for investing in health promotion in these vulnerable populations.

Keywords

Genotoxicity Mutagenicity Environmental exposure Coal mining activities 

Notes

Compliance of ethical standards

The study protocol was approved by the Research Ethics Committee in Health at the Universidade Federal do Rio Grande and approved with the opinion 036/2013 (CEPAS/FURG).

Funding

This study was funded by Companhia de Geração Térmica de Energia Elétrica CGTEE.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Abramsson-zetterberg I, Vikstrom AC, Törnqvist M, Hellenas KE (2008) Differences in the frequency of micronucleated erythrocytes in humans in relation to consumption of fried carbohydrate-rich food. Mutat Res 653(1–2):50–56CrossRefGoogle Scholar
  2. Agência nacional de energia elétrica (2008) Atlas de Energia Elétrica no Brasil. http://www.aneel.gov.br. Acessed 26 May 2015
  3. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512. doi: 10.1007/s00204-008-0313-y CrossRefGoogle Scholar
  4. Bonassi S, Neri M, Lando C, Ceppi M, Lin YP, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Fenech M (2003) Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human MicroNucleus project. Mutat Res 543(2):155–166CrossRefGoogle Scholar
  5. Braga CF, Teixeira EC, Alves R (2004) Estudo de aerossóis atmosféricos e aplicação de modelos numéricos. Qumica Nov. 27(4):567–573Google Scholar
  6. Brasil (2012) Conselho Nacional de Saúde. Diretrizes e normas regulamentadoras sobre pesquisa envolvendo seres humanos. Resolução 466. CNS, BrasíliaGoogle Scholar
  7. Calvert GM, Talaska G, Mueller CA (1998) Genotoxicity in workers exposed to methyl bromide. Mutat Res 417:115–128CrossRefGoogle Scholar
  8. Centro de ecologia (2000) Carvão e Meio Ambiente. UFGRS, Porto AlegreGoogle Scholar
  9. Coronas MV, Pereira TS, Rocha JAV, Lemos AT, Fachel JMG, Salvadori DMF, Vargas VMF (2009) Genetic biomonitoring of an urban population exposed to mutagenic airborne pollutants. Environ Int 35:1023–1029CrossRefGoogle Scholar
  10. Correa NS, Bassan JS, Da Cunha CJ, Fernandéz RR, Bachettini PS, Garcia GL, Martino-Roth MG (2009) Monitoramento da ação genotóxica em trabalhadores de sapatarias através do teste de micronúcleos, Pelotas, Rio Grande do Sul. Ciência & Saúde Coletiva 14(6):2251–2260CrossRefGoogle Scholar
  11. Da Silva J (2016) DNA damage induced by occupational and environmental exposure to miscellaneous chemicals. Mutat Res 770:170–182CrossRefGoogle Scholar
  12. Da Silva-Júnior FMR, Baisch P, Vargas VMF, Muccillo-Baisch, AL (2010) Genetic damage caused by coal and its derivatives. In: James J. Stewart. (Org.). Coal Extraction. 1ed .Nova Publishers 2010 V: 29–48Google Scholar
  13. Dallarosa JB, Teixeira EC, Pires M, Fachel J (2005) Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM 10) using multivariate methods. Atmos Environ 39(35):6587–6596CrossRefGoogle Scholar
  14. Donbak L, Rencuzogullari E, Yavuz A, Topaktas M (2005) The genotoxic risk of underground coal miners from Turkey. Mutat Res 588:82–87CrossRefGoogle Scholar
  15. Dupont-Soares M, Muccillo-Baisch AL, Baisch PRM, Soares MC (2015) Intellectual capacity of children exposed to environmental pollution in the extreme south of Brazil. J Health Sci 3:183–195Google Scholar
  16. Düsman E, Berti AP, Soares LC, Vicentini VEP (2012) Principais Agentes Mutagênicos e Carcinógenos de Exposição Humana. SaBios: RevSaúde e Biol 7:66–81Google Scholar
  17. Ferigolo PC, Sagrillo MR (2013) Genotoxicidade relacionada ao consumo de chimarrão. Disciplinarum Scientia. Série: Ciências da Saúde 14(1):1–13Google Scholar
  18. Finkelman RB, Orem W, Castranova V, Tatu CA, Belkin HE, Zheng B, Lerch HE, Maharaj SV, Bates AL (2002) Health impacts of coal and coal use: possible solutions. Int J Coal Geol 50(1):425–443CrossRefGoogle Scholar
  19. Fisberg RM, Colucci ACA, Morimoto JM, Marchioni DML (2008) Questionário de freqüência alimentar para adultos com base em estudo populacional. Rev Saude Publica 42(3):550–554CrossRefGoogle Scholar
  20. Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M (2008) The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res 659:93–108CrossRefGoogle Scholar
  21. International energy agency (2015) www.iea.org. Acessed 17 july 2015
  22. Jenkins WD, Christian WJ, Mueller G, Robbins KT (2013) Population cancer risks associated with coal mining: a systematic review. PLoS One 8(8):e71312CrossRefGoogle Scholar
  23. Kir T, Durmaz E, Ulutas OK, Cok I, Donbak L (2011) DNA hazard in furnace operating workers from a power plant. J Carcinogene Mutagene 2:4Google Scholar
  24. Lan Q, Mumford JL, Shen M, Demarini DM, Bonner MR, He X, Yeager M, Welch R, Chanock S, Tian L, Chapman RS, Zheng T, Keohavong P, Caporaso N, Rothman N (2004) Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis 25:2177–2181CrossRefGoogle Scholar
  25. Leffa DD, Damiani AP, Da Silva J, Zocche JJ, Dos Santos CEI, Boufleur LA, Dias JF, De Andrade VM (2010) Evaluation of the genotoxic potential of the mineral coal tailings through the Helix aspersa (Mu¨ller, 1774). Arch Environ Contam Toxicol 59:614–621CrossRefGoogle Scholar
  26. León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, Da Silva J, Hartmann A, Henriques JAP, Quintana M (2011) Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ 409:686–691CrossRefGoogle Scholar
  27. León-Mejía G, Quintana M, Debastiani R, Dias J, Espitia-Pérez L, Hartmann A, Henriques JAP, Da Silva J (2014) Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol Environ Saf 107:133–139CrossRefGoogle Scholar
  28. Li X, Yang Y, Xu X, Xu C, Hong J (2015) Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. J Clean ProdGoogle Scholar
  29. Lu Y, Marimoto K (2008) Exposure level to cigarette tar or nicotine is associated with leukocyte DNA damage in male Japanese smokers. Mutagenesis 23(6):451–455CrossRefGoogle Scholar
  30. Menezes APS, Da Silva J, Rossato RR, Cruz MSC, Dihl RR, Lehmann M, Ferraz ABF (2015) Genotoxic and biochemical changes in Baccharis trimera induced by coal contamination. Ecotoxicol Environ Saf 114:9–16CrossRefGoogle Scholar
  31. Møller P (2006) Assessment of reference values for DNA damage detected by thecomet assay in human blood cell DNA. Mutat Res 612:84–104CrossRefGoogle Scholar
  32. Paleologo M, Van Schooten FJ, Pavanello S, Kriek E, Zordan M, Clonfenro E, Bezze C, Levis AG (1992) Detection of benzo[a]pyrene-diolepoxide- DNA adducts in white blood cells of psoriatic patients treated with coal tar. Mutat Res 281:11–16CrossRefGoogle Scholar
  33. Pavanello S, Pulliero A, Saia BO, Clonfero E (2006) Determinants of anti-benzo [a] pyrene diol epoxide–DNA adduct formation in lymphomonocytes of the general population. Mutat Res 611(1):54–63CrossRefGoogle Scholar
  34. Pereira TS, Beltrami LS, Rocha JAV, Broto FP, Comellas LR, Salvadori DMF, Vargas VMF (2013a) Toxicogenetic monitoring in urban cities exposed to different airborne contaminants. Ecotoxicol Environ Saf 90:174–182CrossRefGoogle Scholar
  35. Pereira AV, FDLM R, Oliveira AN, Tapety FI, Cavalcante AACM, Chaves TVS (2013b) Haematological and genotoxic profile study of workers exposed to medical waste. J Res Fundam Care Online 5(6):160–168Google Scholar
  36. Pires M, Querol X, Teixeira EC (2001) Caracterização do carvão de Candiota e de suas cinzas. Geochim Bras 15(2):113–130 in portuguese Google Scholar
  37. Rohr P, Kvitko K, Da Silva FR, Menezes APS, Porto C, Sarmento M, Decker N, Reyes JM, Allgayer MC, Furtado TC, Salvador M, Branco C, Da Silva J (2013b) Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutat Res 758:23–28CrossRefGoogle Scholar
  38. Rohr P, Da Silva J, Da Silva FR, Sarmento M, Porto C, Debastiani R, Dos Santos CEI, Dias JF, Kvitko K (2013a) Evaluation of genetic damage in open-cast coal mine workers using the buccal micronucleus cytome assay. Environ Mol Mutagen 54:65–71CrossRefGoogle Scholar
  39. Schoket B (1999) DNA damage in humans exposed to environmental and dietarypolycyclic aromatic hydrocarbons. Mutat Res 424:143–153CrossRefGoogle Scholar
  40. Silva J, Freitas TRO, Heuser V, Marinho JR, Bittencourt F, Cerski CTS, Kliemann LM, Erdtmann B (2000) Effects of chronic exposure to coal in wild rodents (Ctenomystorquatus) evaluated by multiple methods and tissues. Mutat Res 470:39–51CrossRefGoogle Scholar
  41. Speight JG (2005) Handbook of coal analysis. John Wiley & Sons, New JerseyCrossRefGoogle Scholar
  42. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221CrossRefGoogle Scholar
  43. Tolbert PE, Shy CM, Allen JW (1992) Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutat Res/Environ Mutagenesis Relat Sub 271(1):69–77Google Scholar
  44. Zhang Z, Dmitrieva NI, Park JH, Levine RL, Burg MB (2004) High urea and NaCl carbonylate proteins in renal cells in culture and in vivo and high urea causes 8-oxoguanine lesions in their DNA. PNAS 101(25):9491–9496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Edlaine Acosta Da Silva Pinto
    • 1
    • 2
  • Edariane Menestrino Garcia
    • 1
    • 2
  • Krissia Aparecida de Almeida
    • 1
  • Caroline Feijó Lopes Fernandes
    • 1
    • 2
  • Ronan Adler Tavella
    • 1
    • 2
  • Maria Cristina Flores Soares
    • 1
    • 2
  • Paulo Roberto Martins Baisch
    • 3
  • Ana Luíza Muccillo-Baisch
    • 1
    • 2
  • Flavio Manoel Rodrigues da Silva Júnior
    • 1
    • 2
  1. 1.Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências BiológicasUniversidade Federal do Rio Grande – FURGRio GrandeBrazil
  2. 2.Programa de Pós Graduação em Ciências da SaúdeUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  3. 3.Laboratório de Oceanografia Geológica, Instituto de OceanografiaUniversidade Federal do Rio Grande do Sul – FURGRio GrandeBrazil

Personalised recommendations