Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 20, pp 16893–16904 | Cite as

Determination of carbamazepine and 12 degradation products in various compartments of an outdoor aquatic mesocosm by reliable analytical methods based on liquid chromatography-tandem mass spectrometry

  • Gaëlle Daniele
  • Maëva Fieu
  • Sandrine Joachim
  • Anne Bado-Nilles
  • Rémy Beaudouin
  • Patrick Baudoin
  • Alice James-Casas
  • Sandrine Andres
  • Marc Bonnard
  • Isabelle Bonnard
  • Alain Geffard
  • Emmanuelle VullietEmail author
Research Article

Abstract

The aims of this work are to develop suitable analytical methods to determine the widely used anticonvulsant carbamazepine and 12 of its degradation/transformation products in water, sediment, fish (Gasterosteus aculeatus) and mollusc (Dreissena polymorpha). Protocols based on solid phase extraction for water, pressurized-liquid extraction for sediments and QuEChERS (quick easy cheap efficient rugged and safe) extraction for both organisms followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) are developed, validated and finally applied to samples collected during a 6-month experiment in outdoor mesocosms. Very low detection limits are reached, allowing environmentally realistic doses (namely, 0.05, 0.5 and 5 μg/L nominal concentrations) to be employed. The results indicate several metabolites and/or transformation products in each compartment investigated, with concentrations sometimes being greater than that of the parent carbamazepine. Biotic degradation of carbamazepine is demonstrated in water, leading to 10,11-dihydrocarbamazepine and 10,11-epoxycarbamazepine. In sediment, the degradation results in the formation of acridine, and 2- and 3-hydroxycarbamazepine. Finally, in both organisms, a moderate bioaccumulation is observed together with a metabolization leading to 10,11-epoxycarbamazepine in fish and 2-hydroxycarbamazepine in mollusc. Acridone is also present in fish. This study provides new and interesting data, helping to elucidate how chronic exposure to carbamazepine at relevant concentrations may affect impact freshwater ecosystems.

Keywords

Carbamazepine Mesocosm Bioaccumulation Metabolites Sediment Zebra mussel Stickleback Fresh water 

Notes

Acknowledgements

This research was part of the project DOREMIPHARM (Development of robust tools to assess hazard relative to pharmaceuticals in aquatic ecosystems) financially supported by the ANSM (Agence Nationale de Sécurité du Médicament et des produits de santé).

References

  1. Bergé A, Vulliet E (2015) Development of a method for the analysis of hormones and pharmaceuticals in earthworms by quick, easy cheap effective, rugged and safe (QuEChERS) extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 26:7995–8008CrossRefGoogle Scholar
  2. Berlioz-Barbier A, Buleté A, Faburé J, Garric J, Cren-Olivé C, Vulliet E (2014) Multi-residue analysis of emerging pollutants in benthic invertebrates by modified micro-quick-easy-cheap-efficient-rugged-safe extraction and nanoliquid chromatography-nanospray–tandem mass spectrometry analysis. J Chromatogr A 1367:16–32CrossRefGoogle Scholar
  3. Besse JP, Garric J (2008) Human pharmaceuticals in surface waters: implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123CrossRefGoogle Scholar
  4. Bialk-Bielinska A, Kumirska J, Borecka M, Caban M, Paszkiewicz M, Pazdro K, Stepnowski P (2016) Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm Biomed Anal 121:271–296CrossRefGoogle Scholar
  5. Caquet T, Lagadic L, Sheffield SR (2000) Mesocosms in ecotoxicology (1) outdoor aquatic systems. Rev Environ Contam Toxicol 165:1–38Google Scholar
  6. Chen F, Gong Z, Kelly BC (2015) Rapid analysis of pharmaceuticals and personal care products in fish plasma micro-aliquots using liquid chromatography tandem mass spectrometry. J Chromatogr A 1383:104–111CrossRefGoogle Scholar
  7. Chiron S, Minero C, Vione D (2006) Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environ Sci Technol 40:5977–5983CrossRefGoogle Scholar
  8. Contardo-Jara V, Lorenz C, Pflugmacher S, Nützmann G, Kloas W, Wiegand C (2011) Exposure to human pharmaceuticals carbamazepine, ibuprofen and bezafibrate causes molecular effects in Dreissena polymorpha. Aquat Toxicol 105:428–437CrossRefGoogle Scholar
  9. Daniele G, Fieu M, Joachim S, Baudoin R, Bado-Nilles A, James-Calas A, Andres S, Vulliet E (2016b) Rapid analysis of diclofenac and some of its transformation products in the three-spined stickleback, Gasterosteus aculeatus, by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 408:4435–4444CrossRefGoogle Scholar
  10. Daniele G, Fieu M, Joachim S, James-Calas A, Andres S, Baudoin R, Bonnard M, Bonnard I, Geffard A, Vulliet E (2016a) Development of a multi-residue analysis of diclofenac and some transformation products in bivalves using QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Application to samples from mesocosm studies. Talanta 155:1–7CrossRefGoogle Scholar
  11. de Almeida CAA, Oliveira MS, Mallmann CC, Martins AF (2015) Determination of psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites. Environ Sci Pollut Res 22:17192–17201CrossRefGoogle Scholar
  12. De Kermoysan G, Joachim S, Baudoin P, Lonjaret M, Tebby C, Lesaulnier F, Lestremau F, Chatellier C, Akrour Z, Pheron E, others (2013) Effects of bisphenol A on different trophic levels in a lotic experimental ecosystem. Aquat Toxicol 144:186–198CrossRefGoogle Scholar
  13. Donner E, Kosjek T, Qualmann S, Kusk KO, Heath E, Revitt DM, Ledin A, Andersen HR (2013) Ecotoxicity of carbamazepine and it UV photolysis transformation products. Sci Total Environ 443:870–876CrossRefGoogle Scholar
  14. Durán-Alvarez J, Prado B, González D, Sánchez Y, Jimménez-Cisneros B (2015) Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil—results of laboratory scale experiments. Sci Total Environ 538:350–362CrossRefGoogle Scholar
  15. EMEA (European Medicine Agency) (2006) Guideline on the environmental risk assessment of medicinal products for human use. EMEA/CHMP/SWP/4447/00, LondonGoogle Scholar
  16. Foster HR, Burton GA, Basu N, Werner EE (2010) Chronic exposure to fluoxetine (Prozac) causes developmental delays in Rana pipiens larvae. Environ Toxicol Chem 29:2845–2850CrossRefGoogle Scholar
  17. Gros M, Rodriguez-Mozaz S, Barcelo D (2012) Fast comprehensive multiresidue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 1248:104–121CrossRefGoogle Scholar
  18. Gurk R, Rossmann J, Schubert S, Sandmann T, Rößler M, Oertel R, Fauler J (2015) Development of a SPE-HPLC-MS/MS method for the determination of most prescribed pharmaceuticals and related metabolites in urban sewage samples. J Chromatogr B 990:23–30CrossRefGoogle Scholar
  19. Huerta B, Rodriguez-Mozaz S, Barcelo D (2012) Pharmaceuticals in biota in the aquatic environment: analytical methods and environmental implications. Anal Bioanal Chem 404:2611–2624CrossRefGoogle Scholar
  20. Idder S, Ley L, Mazellier P, Budzinski H (2013) Quantitative on-line preconcentration-liquid chromatography coupled with tandem mass spectrometry method for the determination of pharmaceutical compounds in water. Anal Chim Acta 805:107–115CrossRefGoogle Scholar
  21. International Conference on Harmonization (2005) Q2 (R1): validation of analytical procedures: text and methodologyGoogle Scholar
  22. Jarvis AL, Bernot MJ, Bernot RJ (2014) The effect of the psychiatric drug carbamazepine on freshwater invertebrate communities and ecosystem dynamics. Sci Total Environ 496:461–470CrossRefGoogle Scholar
  23. Jurado A, López-serna R, Vásquez-Suñé E, Carrera J, Pujades E, Petrovic M, Barceló D (2014) Occurrence of carbamazepine and five metabolites in urban aquifer. Chemosphere 115:47–53CrossRefGoogle Scholar
  24. Katsiadaki I, Scott AP, Mayer I (2002) The potential of the three-spined stickleback (Gasterosteus aculeatus L.) as a combined biomarker for oestrogens and androgens in European waters. Mar Environ Res 54:725–728CrossRefGoogle Scholar
  25. Kosjek T, Andersen HR, Kompare B, Ledin A, Heath E (2009) Fate of carbamazepine during water treatment. Environ Sci Technol 43:6256–6261CrossRefGoogle Scholar
  26. Löffler D, Römbke J, Meller M, Ternes TA (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39:5209–5218CrossRefGoogle Scholar
  27. Loos R, Manfred Gawlik B, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568CrossRefGoogle Scholar
  28. Luo Y, Guo W, Hao Ngo H, Duc Nghiem L, Ibney Hai F, Zhang J, Liang S, Wang XCA (2014) Review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473-474:619–641CrossRefGoogle Scholar
  29. Martínez Bueno MJ, Boillot C, Fenet H, Chiron S, Casellas C, Gómez E (2013) Fast and easy extraction combined with high resolution–mass spectrometry for residue analysis of two anticonvulsants and their transformation products in marine mussels. J Chromatogr A 1305:27–34CrossRefGoogle Scholar
  30. Miao X-S, Metcalfe CD (2003) Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography-electrospray tandem mass spectrometry. Anal Chem 75:3731–3738CrossRefGoogle Scholar
  31. Nara Ribeiro de Sousa D, Martins Grosseli G, Aparecido Mozeto A, Lajarim Carneiro R, Sergio Fadini P (2015) Ultrasound-assisted extraction method for the simultaneous determination of emerging contaminants in freshwater sediments. J Sep Sci 38:3454–3460CrossRefGoogle Scholar
  32. Nietch CT, Quinlan EL, Lazorchak JM, Impellitteri CA, Raikow D, Walters D (2013) Effects of a chronic lower range of triclosan exposure on a stream mesocosm community. Environ Toxicol Chem 32:2874–2887CrossRefGoogle Scholar
  33. Palais F, Mouneyrac C, Dedourge-Geffard O, Giambérini L, Biagianti-Risbourg S, Geffard A (2011) One-year monitoring of reproductive and energy reserve cycles in transplanted zebra mussels (Dreissena polymorpha). Chemosphere 83:1062–1073CrossRefGoogle Scholar
  34. Petrie B, Youdan J, Barden R, Kasprzyk-Horden B (2016) Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1431:64–78CrossRefGoogle Scholar
  35. Radke M, Maier MP (2014) Lessons learned from water/sediment-testing of pharmaceuticals. Water Res 55:63–73CrossRefGoogle Scholar
  36. Salvia MV, Fieu M, Vulliet E (2015) Determination of tetracycline and fluoroquinolone antibiotics at traces levels in sludge and soil. Appl Environ Soil Sci 2015: Article ID 435741, 10 pGoogle Scholar
  37. Sanchez W, Katsiadaki I, Piccini B, Ditche JM, Porcher JM (2008) Biomarker responses in wild three-spined stickleback (Gasterosteus aculeatus L.) as a useful tool for freshwaterGoogle Scholar
  38. Subedi B, Mottaleb MA, Chamblissa CK, Usenko S (2011) Simultaneous analysis of select pharmaceuticals and personal care products in fish tissue using pressurized liquid extraction combined with silica gel cleanup. J Chromatogr A 1218:6278–6284CrossRefGoogle Scholar
  39. Valdés ME, Amé MV, Bistoni MA, Wunderlin DA (2014) Occurrence and bioaccumulation of pharmaceutical in a fish species inhabiting the Suquía River basin (Córdoba, Argentina). Sci Total Environ 472:389–396CrossRefGoogle Scholar
  40. Valdés ME, Huerta B, Wunderlin DA, Bistoni MA, Barcelo D, Rodriguez-Mozaz S (2016) Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Sci Total Environ 557-558:58–67CrossRefGoogle Scholar
  41. Vasquez-Roig P, Blasco C, Pico Y (2013) Advances in the analysis of legal and illegal drugs in the aquatic environment. Trends Anal Chem 50:65–77CrossRefGoogle Scholar
  42. Voets J, Talloen W, de Tender T, van Dongen S, Covaci A, Blust R, Bervoets L (2006) Microcontaminant accumulation, physiological condition and bilateral asymmetry in zebra mussels (Dreissena polymorpha) from clean and contaminated surface waters. Aquat Toxicol 79:213–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Gaëlle Daniele
    • 1
  • Maëva Fieu
    • 1
  • Sandrine Joachim
    • 2
  • Anne Bado-Nilles
    • 2
  • Rémy Beaudouin
    • 3
  • Patrick Baudoin
    • 2
  • Alice James-Casas
    • 2
  • Sandrine Andres
    • 2
  • Marc Bonnard
    • 4
  • Isabelle Bonnard
    • 4
  • Alain Geffard
    • 4
  • Emmanuelle Vulliet
    • 1
    Email author
  1. 1.Université Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR5280 CNRSVilleurbanneFrance
  2. 2.INERIS, Laboratoire d’écotoxicologie in vitro et in vivo, Parc Technologique AlataVerneuil-en-HalatteFrance
  3. 3.INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique AlataVerneuil-en-HalatteFrance
  4. 4.Université Reims Champagne Ardenne, UMR-I 02 SEBIO Campus du Moulin de la HousseReims cedex 2France

Personalised recommendations