Environmental Science and Pollution Research

, Volume 24, Issue 19, pp 16107–16119 | Cite as

Portuguese agriculture and the evolution of greenhouse gas emissions—can vegetables control livestock emissions?

Research Article

Abstract

One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

Keywords

Agricultural externalities Greenhouse gas emission Portugal 

References

  1. Aguiar R, Santos FD (2007) Prospective model for greenhouse gas emissions in Portugal. Version 2.2. Final report, volume I: reference scenarios (in Portuguese). Project MISP – climate change: mitigation strategies in Portugal. Calouste Gulbenkian Foundation and Instituto D.Luiz, LisbonGoogle Scholar
  2. Al-mulali U, Fereidouni HG, Mohammed MAHB, Lee JYM (2016) Agriculture investment, output growth, and CO2 emissions relationship. Energy Sources Part B Econ Plan Policy 11(7):665–671CrossRefGoogle Scholar
  3. APA (2014) Inventário Nacional de Emissões Atmosféricas (NIR 2014 – emissões 2012): Memorando sobre emissões de CO2e elaborado com base na submissão oficial para a CE (Dec. 280/2004/CE). Departamento de Alterações Climáticas (DCLIMA). Agência Portuguesa do Ambiente, AmadoraGoogle Scholar
  4. Asumadu-Sarkodie S, Owusu PA (2016) The relationship between carbon dioxide and agriculture in Ghana: a comparison of VECM and ARDL model. Environ Sci Pollut Res 23:10968–10982CrossRefGoogle Scholar
  5. Barbier EB (2004) Agricultural expansion, resource booms and growth in Latin America: implications for long-run economic development. World Dev 32(1):137–157CrossRefGoogle Scholar
  6. Bellarby J, Tirado R, Leip A, Weiss F, Lesschen JP, Smith P (2013) Livestock greenhouse gas emissions and mitigation potential in Europe. Glob Chang Biol 19:3–18CrossRefGoogle Scholar
  7. Bentivoglio D, Finco A, Bacchi MR, Spedicato G (2014) European biodiesel market and rapeseed oil: what impact on agricultural food prices? Int J Global Energy Issues 37(5–6):220–235CrossRefGoogle Scholar
  8. Birthal PS, Singh H, Kumar S (2011) Agriculture, economic growth and regional disparities in India. J Int Dev 23:119–131CrossRefGoogle Scholar
  9. Blandford D, Gaasland I, Vårdal E (2014) The trade-off between food production and greenhouse gasmitigation in Norwegian agriculture. Agric Ecosyst Environ 184:59–66CrossRefGoogle Scholar
  10. Borrego C, Lopes M, Ribeiro I, Carvalho A (2009) As alterações climáticas: uma realidade transformada em desafio. Debater a Europa. Periódico do CIEDA e do CIEJD, em parceria com GPE, RCE e o CEIS20Google Scholar
  11. Bourne M, Childs J, Philippidis G, Feijoo M (2012) Controlling greenhouse gas emissions in Spain: what are the costs for agricultural sectors? Span J Agric Res 10(3):567–582CrossRefGoogle Scholar
  12. Brückner M (2012) Economic growth, size of the agricultural sector, and urbanization in Africa. J Urban Econ 71:26–36CrossRefGoogle Scholar
  13. Campbell JY, Shiller RJ (1988) Interpreting cointegrated models. J Econ Dyn Control 12(2–3):505–522CrossRefGoogle Scholar
  14. Cao KH, Birchenall JA (2013) Agricultural productivity, structural change, and economic growth in post-reform China. J Dev Econ 104:165–180CrossRefGoogle Scholar
  15. Carillo F, Maietta OW (2014) The relationship between economic growth and environmental quality: the contributions of economic structure and agricultural policies. New Medit 13(1):15–21Google Scholar
  16. Ceylan RF, Özkan B (2013) Agricultural value added and economic growth in the European Union accession process. New Medit 12(4):62–71Google Scholar
  17. De Cara S, Jayet P-A (2011) Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement. Ecol Econ 70:1680–1690CrossRefGoogle Scholar
  18. Engle R, Granger C (1987) Co-integration and error correction: representation, estimation, and testing. Econometrica 55(2):251–276CrossRefGoogle Scholar
  19. FAOSTAT (2015) Several statistics. Food and Agriculture Organization of the United NationsGoogle Scholar
  20. GPP (2011a) A agricultura na economia Portuguesa envolvente, importância e evolução recente 2010. MAMAOTGoogle Scholar
  21. GPP (2011b) Alterações climáticas: emissões de gases com efeito de estufa (GEE). Sector agro-pecuário 2009. Divisão de Alterações Climáticas e Biodiversidade, da Direcção de Serviços de Ambiente e Ordenamento do Espaço Rural. Gabinete de Planeamento e Políticas. MADRPGoogle Scholar
  22. INE (2012) Indicadores Económico-ambientais – Conta das Emissões Atmosféricas 1995–2010. Conta das Emissões Atmosféricas: Emissões de gases de efeito estufa atingem mínimo histórico em 2010. Statistics PortugalGoogle Scholar
  23. Jebli MB, Youssef SB (2017) Renewable energy consumption and agriculture: evidence for cointegration and Granger causality for Tunisian economy. Int J Sustain Dev World Ecol 24(2):149–158CrossRefGoogle Scholar
  24. Krolzig H, Hendry D (2000) Computer automation of general-to-specific model selection procedures. J Econ Dyn Control 25:831–866CrossRefGoogle Scholar
  25. Lehtinen T, Schlatter N, Baumgarten A, Bechini L, Kruger J, Grignani C, Zavattaro L, Costamagna C, Spiegel H (2014) Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manag 30:524–538CrossRefGoogle Scholar
  26. Lenzen M, Dey C, Foran B, Widmer-Cooper A, Ohlemüller R, Williams M, Wiedmann T (2013) Modelling interactions between economic activity, greenhouse gas emissions, biodiversity and agricultural production. Environ Model Assess 18:377–416CrossRefGoogle Scholar
  27. Lugato E, Zuliani M, Alberti G, Vedove GD, Gioli B, Miglietta F, Peressotti A (2010) Application of DNDC biogeochemistry model to estimate greenhouse gas emissions from Italian agricultural areas at high spatial resolution. Agric Ecosyst Environ 139:546–556CrossRefGoogle Scholar
  28. Mourao P (2015) The complex relation between the Belarusian trade openness and the agricultural sector. Land Use Policy 43(1):74–81CrossRefGoogle Scholar
  29. Neuhaus M (2006) The impact of FDI on economic growth: an analysis for the transition countries of central and Eastern Europe. Springer, New YorkGoogle Scholar
  30. Pereira TC, Seabra T, Pina A, Canaveira P, Amaro A, Freitas L (2014) Portuguese national inventory report on greenhouse gases, 1990–2012. Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Portuguese Environmental Agency, AmadoraGoogle Scholar
  31. Rasetti M, Finco A, Bentivoglio D (2014) GHG balance of biodiesel production and consumption in EU. Int J Global Energy Issues 37(5–6):191–204CrossRefGoogle Scholar
  32. Seixas J, Simões S, Fortes P, Cleto J, Barroso JE, Alves B, Dinis R, Pisco F, Faria P, Finote S (2008) PortugalClima2020. Avaliação do impacto da proposta energia-clima da Comissão Europeia para Portugal. Trabalho realizado para: Comité Executivo – Comissão para as Alterações Climáticas, Agência Portuguesa para o Ambiente. E.Value, Lda. – Projectos e Estudos em Ambiente e Economia, LisboaGoogle Scholar
  33. Spolador HFS, Roe TL (2013) The role of agriculture on the recent Brazilian economic growth: how agriculture competes for resources. Dev Econ 51(4):333–359CrossRefGoogle Scholar
  34. Stern D (2011) “From correlation to Granger causality”. Crawford School Research Paper, n 13. Australian National UniversityGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department EconomicsUniversity of MinhoBragaPortugal
  2. 2.Agricultural SchoolPolytechnic Institute of ViseuViseuPortugal

Personalised recommendations