Skip to main content

Advertisement

Log in

Characteristics of columnar aerosol optical and microphysical properties retrieved from the sun photometer and its impact on radiative forcing over Skukuza (South Africa) during 1999–2010

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The detailed analysis of columnar optical and microphysical properties of aerosols obtained from the AErosol RObotic NETwork (AERONET) Cimel sun photometer operated at Skukuza (24.98° S, 31.60° E, 150 m above sea level), South Africa was carried out using the level 2.0 direct sun and inversion products measured during 1999–2010. The observed aerosol optical depth (AOD) was generally low over the region, with high values noted in late winter (August) and mid-spring (September and October) seasons. The major aerosol types found during the study period were made of 3.74, 69.63, 9.34, 8.83, and 8.41% for polluted dust (PD), polluted continental (PC), non-absorbing (NA), slightly absorbing (SA), and moderately absorbing (MA) aerosols, respectively. Much attention was given to the aerosol fine- and coarse-modes deduced from the particle volume concentration, effective radius, and fine-mode volume fraction. The aerosol volume size distribution pattern was found to be bimodal with the fine-mode showing predominance relative to coarse-mode during the winter and spring seasons, owing to the onset of the biomass burning season. The mean values of total, fine-, and coarse-mode volume particle concentrations were 0.07 ± 0.04, 0.03 ± 0.03, and 0.04 ± 0.02 μm3 μm−2, respectively, whereas the mean respective effective radii observed at Skukuza for the abovementioned modes were 0.35 ± 0.17, 0.14 ± 0.02, and 2.08 ± 0.02 μm. The averaged shortwave direct aerosol radiative forcing (ARF) observed within the atmosphere was found to be positive (absorption or heating effect), whereas the negative forcing in the surface and TOA depicted significant cooling effect due to more scattering type particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adesina AJ, Kumar KR, Sivakumar V, Griffith D (2014) Direct radiative forcing of urban aerosols over Pretoria (25.75°S, 28.28°E) using AERONET Sunphotometer data: first scientific results and environmental impact. J Environ Sci 26:2459–2474

    Article  Google Scholar 

  • Adesina AJ, Kumar KR, Sivakumar V (2015) Variability in aerosol optical properties and radiative forcing over Gorongosa (18.97°S, 34.35°E) in Mozambique. Meteorog Atmos Phys 127:217–228

    Article  Google Scholar 

  • Adesina AJ, Kumar KR, Sivakumar V, Piketh SJ (2016) Intercomparison and assessment of long-term (2004-2013) multiple satellite aerosol products over two contrasting sites in South Africa. J Atmos Solar Terres Phys 148:82–95

    Article  CAS  Google Scholar 

  • Alam K, Trautmann T, Blaschke T, Majid H (2012) Aerosol optical and radiative properties during summer and winter season over Lahore and Karachi. Atmos Environ 50:234–245

    Article  CAS  Google Scholar 

  • Alam K, Trautmann T, Blaschke T, Subhan F (2014) Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sens Environ 143:216–227

    Article  Google Scholar 

  • Ångström A (1964) The parameters of atmospheric turbidity. Tellus 16:64–75

  • Bergstrom RW, Pilewskie P, Russell P, Redemann J, Bond T, Quinn P, Sierau B (2007) Spectral absorption properties of atmospheric aerosols. Atmos Chem Phys 7(23):5937–5943

    Article  CAS  Google Scholar 

  • Bibi H, Alam K, Bibi S (2016) In-depth discrimination of aerosol types using multiple clustering techniques over four locations in indo-Gangetic plains. Atmos Res 181:106–114

    Article  CAS  Google Scholar 

  • Cachorro V, Vergaz R, De Frutos A (2001) A quantitative comparison of α−Å turbidity parameter retrieved in different spectral ranges based on spectroradiometer solar radiation measurements. Atmos Environ 35(30):5117–5124

    Article  CAS  Google Scholar 

  • Charlson RJ, Schwartz S, Hales J, Cess RD, Coakley J, Hansen J, Hofmann D (1992) Climate forcing by anthropogenic aerosols. Science 255(5043):423–430

    Article  CAS  Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res-Atmos 105(D16):20673–20696

    Article  Google Scholar 

  • Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanré D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Eck TF, Holben BN, Reid J, Dubovik O, Smirnov A, O’neill N, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res-Atmos 104(D24):31333–31349

    Article  Google Scholar 

  • Eck TF, Holben BN, Reid J, O’Neill N, Schafer J, Dubovik O, Smirnov A, Yamasoe M, Artaxo P (2003a) High aerosol optical depth biomass burning events: a comparison of optical properties for different source regions. Geophys Res Letts 30(2). doi:10.1029/2003GL017861

  • Eck TF, Holben BN, Ward D, Mukelabai M, Dubovik O, Smirnov A, Schafer J, Hsu N, Piketh S, Queface A (2003b) Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements. J Geophys Res Atmos 108(D13). doi:10.1029/2002JD002321

  • El-Metwally M, Alfaro SC, Wahab AMM, Favez O, Mohamed Z, Chatenet B (2011) Aerosol properties and associated radiative effects over Cairo (Egypt). Atmos Res 99:263–276

    Article  CAS  Google Scholar 

  • Freiman M, Piketh S (2003) Air transport into and out of the industrial Highveld region of South Africa. J Appl Meteorol 42(7):994–1002

    Article  Google Scholar 

  • García O, Díaz J, Expósito F, Díaz A, Dubovik O, Derimian Y, Dubuisson P, Roger J-C (2012) Shortwave radiative forcing and efficiency of key aerosol types using AERONET data. Atmos Chem Phys 12(11):5129–5145

    Article  Google Scholar 

  • Giles DM, Holben BN, Eck TF, Sinyuk A, Smirnov A, Slutsker I, Dickerson R, Thompson A, Schafer J (2012) An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res Atmos 117(D17). doi:10.1029/2012JD018127

  • Hersey SP, Garland R, Crosbie E, Shingler T, Sorooshian A, Piketh S, Burger R (2015) An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data. Atmos Chem Phys 15:4259–4278

    Article  CAS  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman Y, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Ichoku C, Remer LA, Kaufman YJ, Levy R, Chu DA, Tanré D, Holben BN (2003) MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. J Geophys Res-Atmos 108(D13)

  • IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, p 1535

    Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409(6821):695–697

    Article  CAS  Google Scholar 

  • Kalapureddy M, Kaskaoutis DG, Raj PE, Devara P, Kambezidis H, Kosmopoulos P, Nastos P (2009) Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB). J Geophys Res Atmos 114(D17). doi:10.1029/2009JD011826

  • Kang N, Kumar KR, Yu X, Yin Y (2016) Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China. Environ Sci Pollut Res 23:17532–17552

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis H, Hatzianastassiou N, Kosmopoulos P, Badarinath KVS (2007) Aerosol climatology: on the discrimination of aerosol types over four AERONET sites. Atmos Chem Phys Discuss 7(3):6357–6411

    Article  Google Scholar 

  • Kaskaoutis DG, Badarinath KVS, Kharol SK, Sharma AR, Kambezidis H (2009) Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J Geophys Res Atmos 114(D22). doi:10.1029/2009JD012423

  • Kumar KR, Sivakumar V, Reddy RR, Gopal KR, Adesina AJ (2013) Inferring wavelength dependence of AOD and Ångström exponent over a sub-tropical station in South Africa using AERONET data: influence of meteorology, long-range transport and curvature effect. Sci Total Environ 461:397–408

    Article  Google Scholar 

  • Kumar KR, Sivakumar V, Reddy RR, Gopal KR, Adesina AJ (2014) Identification and classification of different aerosol types over a subtropical rural site in Mpumalanga, South Africa: seasonal variations as retrieved from the AERONET Sunphotometer. Aerosol Air Qual Res 14(1):108–123

    Google Scholar 

  • Kumar KR, Yin Y, Sivakumar V, Kang N, Yu X, Diao Y, Adesina AJ, Reddy RR (2015) Aerosol climatology and discrimination of aerosol types retreived from MODIS, MISR, and OMI over Durban (29.88S, 31.02E), South Africa. Atmos Environ 117:9–18

    Article  CAS  Google Scholar 

  • Lee J, Kim J, Song CH, Kim SB, Chun Y, Sohn BJ, Holben BN (2010) Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos Environ 44:3110–3117

    Article  CAS  Google Scholar 

  • Mateos D, Anton M, Toledano C, Cachorro VE, Alados-Arboledas L et al (2014) Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the Iberian peninsula. Atmos Chem Phys 14:13497–13514

    Article  CAS  Google Scholar 

  • Nyeki S, Wehril C, Grobner, Kouremeti N, Wacker S, Labuschagne C, Mbatha N, Brunke EG (2015) The GAW-PFR aerosol optical depth network: the 2008-2013 time series at Cape point station, South Africa. J Geophys Res-Atmos 120:5070–5084

    Article  Google Scholar 

  • O’Neill N, Eck TF, Smirnov A, Holben BN, Thulasiraman S (2003) Spectral discrimination of coarse and fine mode optical depth. J Geophys Res Atmos 108(D17). doi:10.1029/2002JD002975

  • Pace G, Sarra AD, Meloni D, Piacentino S, Chamard P (2006) Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos Chem Phys 6(3):697–713

    Article  CAS  Google Scholar 

  • Piketh S, Annegarn H, Tyson P (1999) Lower tropospheric aerosol loadings over South Africa: the relative contribution of aeolian dust, industrial emissions, and biomass burning. J Geophys Res-Atmos 104(D1):1597–1607

    Article  CAS  Google Scholar 

  • Prats N, Cachorro V, Berjón A, Toledano C, de Frutos A (2011) Column-integrated aerosol microphysical properties from AERONET sun photometer over southwestern Spain. Atmos Chem Phys 11(24):12535–12547

    Article  CAS  Google Scholar 

  • Queface AJ, Piketh SJ, Eck TF, Tsay S-C, Mavume AF (2011) Climatology of aerosol optical properties in southern Africa. Atmos Environ 45(17):2910–2921

    Article  CAS  Google Scholar 

  • Russell P, Bergstrom R, Shinozuka Y, Clarke A, DeCarlo P, Jimenez J, Livingston J, Redemann J, Dubovik O, Strawa A (2010) Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10(3):1155–1169

    Article  CAS  Google Scholar 

  • Schuster GL, Dubovik O, Holben BN (2006) Angstrom exponent and bimodal aerosol size distributions. J Geophys Res Atmos 111(D7). doi:10.1029/2005JD006328

  • Schwartz SE, Benkovitz CM (2002) Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling. Proc National Acad Sci 99(4):1784–1789

    Article  CAS  Google Scholar 

  • Singh RP, Dey S, Tripathi S, Tare V, Holben BN (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109(D23206). doi:10.1029/2004JD004966

  • Sivakumar V, Tesfaye M, Alemu W, Sharma A, Bollig C, Mengistu G (2010) Aerosol measurements over South Africa using satellite, sun-photometer and LIDAR. Adv Geosci 16:253–264

    Google Scholar 

  • Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud screening and quality control algorithms for the AERONET database. Remote Sens Environ 73:337–349

    Article  Google Scholar 

  • Srivastava A, Tripathi S, Dey S, Kanawade V, Tiwari S (2012) Inferring aerosol types over the indo-Gangetic Basin from ground based sunphotometer measurements. Atmos Res 109:64–75

    Article  Google Scholar 

  • Tesfaye M, Sivakumar V, Botai J, Mengistu TG (2011) Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data. J Geophys Res Atmos ​116(D20). doi:10.1029/2011JD016023

  • Yu XN, Kumar KR, Lu R, Ma J (2016a) Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing. Environ Pollut 210:217–226

    Article  CAS  Google Scholar 

  • Yu XN, Lu R, Kumar KR, Ma J, Zhang Q, Jiang Y, Kang N, Yang S, Wang J, Li M (2016b) Dust aerosol properties and radiative forcing observed in spring during 2001-2014 over urban Beijing, China. Environ Sci Pollut Res 23:15432–15442

    Article  Google Scholar 

  • Zhang X, Wang Y, Niu T, Zhang X, Gong S, Zhang Y, Sun J (2012) Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys 12(2):779–799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work is supported by the French Centre National de la Recherche Scientifique (CNRS), the South African National Research Foundation (NRF-UID: 81659), the National Natural Science Foundation of China (Grant No. 91644224), the NUIST Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration (Grant No. KDW1404), and the National Research Foundation of South Africa bi-lateral research grant (UID: 78682). The authors wish to acknowledge the support of the AERONET team for the availability of online data which is used in this paper. The authors would like to acknowledge Prof. Gerhard Lammel, the Editor-in-Chief of journal, and the three anonymous reviewers for their helpful comments and constructive suggestions towards the improvement of an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Kumar Kanike.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesina, A.J., Piketh, S., Kanike, R.K. et al. Characteristics of columnar aerosol optical and microphysical properties retrieved from the sun photometer and its impact on radiative forcing over Skukuza (South Africa) during 1999–2010. Environ Sci Pollut Res 24, 16160–16171 (2017). https://doi.org/10.1007/s11356-017-9211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9211-2

Keywords

Navigation