Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 1124–1141 | Cite as

Nitrate removal from drinking water with a focus on biological methods: a review

  • Fariba Rezvani
  • Mohammad-Hossein SarrafzadehEmail author
  • Sirous Ebrahimi
  • Hee-Mock OhEmail author
Water Industry: Water-Energy-Health Nexus

Abstract

This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.

Keywords

Drinking water Nitrate removal technology Autotrophic and heterotrophic denitrification Assimilatory and dissimilatory nitrate reduction Cost Microalgae 

Abbreviations

USEPA

United States Environmental Protection Agency

MCL

Maximum contaminant levels

WHO

World Health Organization

EEC

European Economic Community

RO

Reverse osmosis

IX

Ion exchange

ED

Electro dialysis

CD

Chemical denitrification

BD

Biological denitrification

SBA

Strong base anion

DO

Dissolved oxygen

ATP

Adenosine triphosphate

HRT

Hydraulic retention time

COD

Chemical oxygen demand

BOD

Biological oxygen demand

C/N

Carbon-to-nitrate

DOC

Dissolved organic carbon

DBP

Disinfection byproduct

BER

Bio-electrochemical reactor

O&M

Operations and maintenance

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the University of Tehran under grant number 8104956/1/03, KRIBB Research Initiative Program, and the Advanced Biomass R&D Center (ABC) of the Global Frontier Program funded by the Ministry of Science, ICT, and Future Planning (2010-0029723).

References

  1. Abu Hasan H, Sheikh Abdullah R, Kamarudin K, Tan Kofli N, Anuar N (2014) Kinetic evaluation of simultaneous COD, ammonia and manganese removal from drinking water using a biological aerated filter system. Sep Purif Technol 130:56–64. doi: 10.1016/j.seppur.2014.04.016 Google Scholar
  2. Ashok V, Hait S (2015) Remediation of nitrate-contaminated water by solid-phase denitrification process-a review. Environ Sci Pollut Res 22:8075–8093. doi: 10.1007/s11356-015-4334-9 Google Scholar
  3. Aslan S, Turkman A (2003) Biological denitrification of drinking water using various natural organic solid substrates. Water Sci Technol 48:489–495. doi: 10.1007/s11426-008-0111-7 Google Scholar
  4. Aslan S, Turkman A (2006) Nitrate and pesticides removal from contaminated water using biodenitrification reactor. Process Biochem 41:882–886. doi: 10.1016/j.procbio.2005.11.004 Google Scholar
  5. Banasiak L, Schafer A (2009) Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J Membrane Sci 334:101–109. doi: 10.1016/j.memsci.2009.02.020 Google Scholar
  6. Bastviken SK, Eriksson PG, Premrove A, Tonderski K (2005) Potential denitrification in wetland sediments with different plant species detritus. Ecol Eng 25:183–190. doi: 10.1016/j.ecoleng.2005.04.013 Google Scholar
  7. Bellona C, Drewes JE, Oelker G, Luna J, Filteau G, Amy G (2008) Comparing nanofiltration and reverse osmosis for drinking water augmentation. J Am Water Works Ass 100:102–116Google Scholar
  8. Bergey DH, Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology. 8th ed. Williams & Wilkins Company, Baltimore, MD, p 456–461Google Scholar
  9. Bohdziewicz J, Bodzek M, Wasik E (1999) The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater. Desalination 121:139–147. doi: 10.1016/S0011-9164(99)00015-6 Google Scholar
  10. Boley A, Mergaert J, Muller C, Lebrenz H, Cnockaert MC, Müller WR, Swings J (2003) Denitrification and pesticide elimination in drinking water treatment with the biodegradable polymer poly(ε-caprolactone) (PCL). Acta Hydrochim Hydrobiol 31:195–203Google Scholar
  11. Boley A, Unger B, Müller WR, Kuch B, Deger A (2006) Biological drinking water treatment for nitrate and pesticide (endosulfan) elimination. Water Sci Technol 6:123–127. doi: 10.2166/ws.2006.786 Google Scholar
  12. Brenner A, Argaman Y (1992) Effect of feed composition, aerobic volume fraction and recycle rate on nitrogen removal in the single-sludge system. Water Res 24:1041–1049. doi: 10.1016/0043-1354(90)90127-R Google Scholar
  13. Brettar I, Labrenz M, Flavier S, Botel J, Kuosa H, Christen R (2006) Identification of a Thiomicrospira denitrificans like Epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic sea. Appl Environ Microbiol 72:1364–1372. doi: 10.1128/AEM.72.2.1364-1372.2006 Google Scholar
  14. Brezonik PL (1977) Denitrification in natural waters. Progress in Water Technology 8:373–392Google Scholar
  15. Burghate SP, Ingole NW (2014) Biological denitrification - a Review. J Environ Sci Comput Sci Eng Technol 14:009–028Google Scholar
  16. Cevaal JN, Suratt WB, Burke JE (1995) Nitrate removal and water quality improvements with reverse osmosis for Brighton, Colorado. Desalination 103:101–111. doi: 10.1016/0011-9164(95)00091-7 Google Scholar
  17. Chang CC, Tseng SK, Huang HK (1999) Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresour Technol 69:53–58. doi: 10.1016/S0960-8524(98)00168-0 Google Scholar
  18. Chaplin BP, Reinhard M, Schneider WF, Schüth C, Shapley JR, Strathmann TJ, Werth CJ (2012) Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ Sci Technol 46:3655–3670. doi: 10.1021/es204087q Google Scholar
  19. Chen D, Yang K, Wang H (2014a) Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor. Desalin Water Treat 57. doi:  10.1080/19443994.2014.986533
  20. Chen D, Yang K, Wang H, Lv B (2014b) Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor. Water Sci Technol 69:2417–2422. doi: 10.2166/wst.2014.167 Google Scholar
  21. Chen D, Dai T, Wang H, Yang K (2015) Nitrate removal by a combined bioelectrochemical and sulfur autotrophic denitrification (CBSAD) system at low temperatures. Desalin Water Treat 57:1–7. doi: 10.1080/19443994.2015.1101024 Google Scholar
  22. Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695. doi: 10.1016/S0045-6535(97)00275-0 Google Scholar
  23. Chintala R, Mollinedo J, Schumacher TE, Malo DD, Papiernik S, Clay DE, Kumar S, Gulbrandson DW (2013) Nitrate sorption and desorption by biochars produced from microwave pyrolysis. Micropor Mesopor Mat 179:250–257. doi: 10.1016/j.micromeso.2013.05.023 Google Scholar
  24. Chiu YC, Chung MS (2003) Determination of optimal COD/nitrate ratio for biological denitrification. Int Biodeter Biodegr 51:43–49. doi: 10.1016/S0964-8305(02)00074-4 Google Scholar
  25. Chung J, Amin K, Kim S, Yoon S, Kwon K, Bae W (2014) Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Res 58:169–178. doi: 10.1016/j.watres.2014.03.071 Google Scholar
  26. Claus G, Kutzner HJ (1985b) Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl Microbiol Biotechnol 22:283–288. doi: 10.1007/BF00252031 Google Scholar
  27. Conlon WJ, Blandon FA, Moody J (1995) Cost comparison of treatment alternatives for the removal of nitrates and DBCP from Southern California groundwater. Desalination 103:89–100. doi: 10.1016/0011-9164(95)00090-9 Google Scholar
  28. Dahnke K, Moneta A, Veuger B, Soetaert K, Middelburg JJ (2012) Balance of assimilative and dissimilative nitrogen processes in a diatom-rich tidal flat sediment. Biogeosciences 9:4059–4070. doi: 10.5194/bg-9-4059-2012 Google Scholar
  29. Darbi A, Viraraghavan T, Butler R, Corkal D (2003) Pilot-scale evaluation of select nitrate removal technologies. J Environ Sci Heal A 38:703–1715. doi: 10.1081/ESE-120022873 Google Scholar
  30. De-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627. doi: 10.1016/j.biortech.2009.09.043 Google Scholar
  31. De-Bashan LE, Trejo A, VAR H, Hernandez JP, Bashan Y (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99:4980–4989. doi: 10.1016/j.biortech.2007.09.065 Google Scholar
  32. de la Noue J, Laliberte G, Proulx D (1992) Algae and waste water. J Appl Phycol 4:247–254Google Scholar
  33. Della Rocca C, Belgiorno V, Meric S (2005) Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment. Water SA 31:229–236Google Scholar
  34. Della Rocca C, Belgiorno V, Meric S (2006) A heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem 41:1022–1028. doi: 10.1016/j.procbio.2005.11.002 Google Scholar
  35. Della Rocca C, Belgiorno V, Meriç S (2007) Overview of in-situ applicable nitrate removal processes. Desalination 204:46–62. doi: 10.1016/j.desal.2006.04.023 Google Scholar
  36. Devi MP, Swamy YV, Venkata Mohan S (2013) Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour Technol 142:278–286. doi: 10.1016/j.biortech.2013.05.001 Google Scholar
  37. Di Capua F, Milone I, Lakaniemi AM, Lens NLP, Esposito G (2017) High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures. Chem Eng J 313:591–598. doi: 10.1016/j.cej.2016.12.106 Google Scholar
  38. Elgood Z, Robertson WD, Schiff SL, Elgood R (2010) Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor. Ecol Eng 36:1575–1580. doi: 10.1016/j.ecoleng.2010.03.011 Google Scholar
  39. Eliassen R, Wyckoff BM, Tonkin CD (1995) Ion exchange for reclamation of reusable supplies. J Am Water Works Ass 57:1113–1122Google Scholar
  40. Ergas SJ, Reuss AF (2001) Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. J Water Supply: Res Technol Aqua 50:161–171Google Scholar
  41. Fu G, Huangshen L, Guo Z, Zhou Q, Wu Z (2017) Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland. Bioresour Technol 224:214–221. doi: 10.1016/j.biortech.2016.11.007 Google Scholar
  42. Gayle BP, Boardman GD, Sherrard JH, Benoit RE (1989) Biological denitrification of water. J Environ Eng 15:930–943. doi: 10.1016/0043-1354(95)00242-1 Google Scholar
  43. Ghafari S, Hasan M, Aroua MK (2009) Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of hydrogenotrophic denitrifying bacteria. J Hazard Mater 162:1507–1513. doi: 10.1016/j.jhazmat.2008.06.039 Google Scholar
  44. Giwa A, Dufour V, Al Marzooqi F, Al Kaabi M, Hasan SW (2017) Brine management methods: recent innovations and current status. Desalination 407:1–23. doi: 10.1016/j.desal.2016.12.008 Google Scholar
  45. Gómez MA, González-López J, Hontoria-García E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80:69–80. doi: 10.1016/S0304-3894(00)00282-X Google Scholar
  46. Green M, Shelef G (1994) Treatment of nitrate contaminated groundwater for drinking purposes. In: Zoller U (ed) Groundwater contamination and control. Marcel Dekker Publishers, New York, pp 587–606Google Scholar
  47. Greenan CM, Moorman TB, Parkin TB, Kaspar TC, Jaynes DB (2009) Denitrification in wood chip bioreactors at different water flows. J Environ Qual 38:1664–1671. doi: 10.2134/jeq2008.0413 Google Scholar
  48. Gross H, Schnoor G, Treuter K (1986) Nitrate removal from groundwater by autotrophic microorganisms. J Water Supply Rest T 4:11–21Google Scholar
  49. Guy KA, Xu H, Yang JC, Werth CJ, Shapley JR (2009) Catalytic nitrate and nitrite reduction with Pd−cu/PVP colloids in water: composition, structure, and reactivity correlations. J Phys Chem C 113:8177–8185. doi: 10.1021/jp810049y Google Scholar
  50. Hamlin HJ, Michaels JT, Beaulaton CM, Graham WF, Dutt W, Steinbach P, Losordo TM, Schrader KK, Main KL (2008) Comparing denitrification rates and carbon sources in commercial scale up flow denitrification biological filters in aquaculture. Aquac Eng 38:79–92. doi: 10.1016/j.aquaeng.2007.11.003 Google Scholar
  51. Hao Z, Xu X, Wang D (2005) Reductive denitrification of nitrate by scrap iron filings. J Zhejiang Univ-Sc B 6:182–186. doi: 10.1631/jzus.2005.B0182 Google Scholar
  52. Haugen KS, Semmens MJ, Novak PJ (2002) A novel in situ technology for the treatment of nitrate contaminated groundwater. Water Res 36:3497–3506. doi: 10.1016/S0043-1354(02)00043-X
  53. Hell F, Lahnsteiner J, Frischherz H, Baumgartner G (1998) Experience with full scale electrodialysis for nitrate and hardness removal. Desalination 117:173–180. doi: 10.1016/S0011-9164(98)00088-5 Google Scholar
  54. Her JJ, Huang JS (1995) Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour Technol 54:45–51. doi: 10.1016/0960-8524(95)00113-1 Google Scholar
  55. Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755Google Scholar
  56. Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61:103–109. doi: 10.1007/s00253-002-1198-y Google Scholar
  57. Hoffmann JP (1998) Wastewater treatment with suspended and non-suspended algae. J Phycol 34:757–763. doi: 10.1046/j.1529-8817.1998.340757.x Google Scholar
  58. Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66:133–139. doi: 10.1128/AEM.66.1.133-139.2000 Google Scholar
  59. Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642. doi: 10.1016/j.watres.2004.03.015 Google Scholar
  60. Jensen VB, Darby JL, Seidel C, Gorman C (2014) Nitrate in potable water supplies: alternative management strategies. Crit Rev Env Sci Tec 44:2203–2286. doi: 10.1080/10643389.2013.828272 Google Scholar
  61. Jeris JS, Beer C, Mueller JA (1974) High rate biological denitrification using a granular fluidized. J Water Poll Cont Fed 46:2118–2128Google Scholar
  62. Ju X, Field JA, Sierra-Alvarez R, Salazar M, Bentley H, Bentley R (2007) Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnol Bioeng 96:1073–1082. doi: 10.1002/bit.21197 Google Scholar
  63. Justin P, Kelly DP (1978a) Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture. J Gen Microbiol 107:123–130. doi: 10.1099/00221287-107-1-123 Google Scholar
  64. Kalaruban M, Loganathan P, Shim WG, Kandasamy J, Naidu G, Nguyen TV, Vigneswaran S (2016) Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: batch and fluidised-bed adsorption studies. Sep Purif Technol 158:62–70. doi: 10.1016/j.seppur.2015.12.022 Google Scholar
  65. Kamp A, de Beer D, Nitsch JL, Lavik G, Stief P (2011) Diatoms respire nitrate to survive dark and anoxic conditions. P Natl Acad Sci USA 108:5649–5654. doi: 10.1073/pnas.1015744108 Google Scholar
  66. Kapoor A, Viraraghavan T (1997) Nitrate removal from drinking water-review. J Environ Eng 123:371–380. doi: 10.1061/(ASCE)0733-9372 Google Scholar
  67. Karanasios KA, Vasiliadou IA, Pavlou S, Vayenas DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37. doi: 10.1016/j.jhazmat.2010.04.090 Google Scholar
  68. Kelso BHL, Smith RV, Laughlin RJ (1999) Effects of carbon substrates on nitrite accumulation in freshwater sediments. Appl Environ Microbiol 65:61–66Google Scholar
  69. Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65:789–798. doi: 10.1093/jxb/eru001 Google Scholar
  70. Kumar M, Chakraborty S (2006) Chemical denitrification of water by zero-valent magnesium powder. J Hazard Mater 135:112–121. doi: 10.1016/j.jhazmat.2005.11.031 Google Scholar
  71. Kurt M, Dunn IJ, Bourne JR (1987) Biological denitrification of drinking water using autotrophic organisms with hydrogen in a fluidized-bed biofilm bioreactor. Biotechnol Bioeng 29:493–501. doi: 10.1002/bit.260290414 Google Scholar
  72. Lee K, Lee CG (2001) Effect of light/dark cycles on wastewater treatment by microalgae. Biotechnol Bioprocess Eng E 6:194–199. doi: 10.1007/BF02932550 Google Scholar
  73. Lee KC, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040–2052. doi: 10.1016/S0043-1354(01)00425-0 Google Scholar
  74. Lew B, Stief P, Beliavski M, Ashkenazi A, Svitlica O, Khan A, Tarre S, de Beer D, Green M (2012) Characterization of denitrifying granular sludge with and without the addition of external carbon source. Bioresour Technol 124:413–420. doi: 10.1016/j.biortech.2012.08.049 Google Scholar
  75. Li P, Zuo J, Xing W, Tang L, Ye X, Li Z, Yuan L, Wang K, Zhang H (2013) Starch/polyvinyl alcohol blended materials used as solid carbon source for tertiary denitrification of secondary effluent. J Environ Sci 25:1972–1979. doi: 10.1016/S1001-0742(12)60259-9 Google Scholar
  76. Liessens J, Germonpre R, Beernaert S, Verstraete W (1993) Removing nitrate with a methylotrophic fluidized bed: technology and operating performance. J Am Water Works Ass 84:144–154Google Scholar
  77. Lin Y-F, Jing S-R, Lee D-Y, Chang Y-F, Shih K-C (2008) Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates. Bioresour Technol 99:7504–7513. doi: 10.1016/j.biortech.2008.02.017 Google Scholar
  78. Lina Y-F, Jinga S-R, Wangb T-W, Leea D-Y (2002) Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ Pollut 119:413–420Google Scholar
  79. Liu X, Clifford DA (1996) Ion exchange with denitrified brine reuse. J Am Water Works Ass 88:88–99Google Scholar
  80. Liu LH, Koenig A (2002) Use of limestone for pH control in autotrophic denitrification: batch experiments. Process Biochem 37:885–893. doi: 10.1016/s0032-9592(01)00302-8 Google Scholar
  81. Liu K, Li J, Qiao H, Lin A, Wang G (2012) Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour Technol 114:26–32. doi: 10.1016/j.biortech.2012.02.003 Google Scholar
  82. Luk GK, Au-Yeung WC (2002) Experimental investigation on the chemical reduction of nitrate from groundwater. Adv Environ Res 6:441–453Google Scholar
  83. Lyubchenko OA, Mogilevich NF, Gvozdyak PI (1996) Microbial nitrification and sewage treatment. J Water Chem Techno 18:98–112Google Scholar
  84. Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art review. Desalination 267:1–8Google Scholar
  85. Mansell BO, Schroeder ED (2002) Hydrogenotrophic denitrification in a microporous membrane bioreactor. Water Res 36:4683–4690Google Scholar
  86. Matějů V, Čižinská S, Krejčí J, Janoch T (1992) Biological water denitrification – a review. Enzyme Microb Tech 14:170–183. doi: 10.1016/0141-0229(92)90062-S Google Scholar
  87. Maxwell E, Peterson WE, CM O’Reilly (2017) Enhanced nitrate reduction within a constructed wetland system: Nitrate removal within groundwater flow. Wetlands: 1–10. doi:  10.1007/s13157-017-0877-5
  88. McAdam EJ, Judd SJ (2007) Denitrification from drinking water using a membrane bioreactor: chemical and biochemical feasibility. Water Res 41:4242–4250. doi: 10.1016/j.watres.2007.05.059 Google Scholar
  89. McAdam EJ, Judd SJ (2008) Biological treatment of ion-exchange brine regenerate for re-use: a review. Sep Purif Technol 62:264–272Google Scholar
  90. Midaoui AE, Elhannouni F, Taky M, Chay L, Menkouchi Sahli MA, Echihabi L, Hafsi M (2002) Optimization of nitrate removal operation from ground water by electrodialysis. Sep Purif Technol 29:235–244Google Scholar
  91. Mohseni-Bandpi A, Elliott DJ, Zazouli MA (2013) Biological nitrate removal processes from drinking water supply-a review. J Environ Health Sci Eng 11:35. doi: 10.1186/2052-336X-11-35 Google Scholar
  92. Moon HS, Chang SW, Nam K, Choe J, Kim JY (2006) Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification. Environ Pollut 144:802–807. doi: 10.1016/j.envpol.2006.02.020 Google Scholar
  93. Moon HS, Shin DY, Nam K, Kim JY (2008) A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere 73:723–728. doi: 10.1016/j.chemosphere.2008.06.065 Google Scholar
  94. Moreno B, Gómez MA, González-López J, Hontoria E (2005) Inoculation of a submerged filter for biological denitrification of nitrate polluted groundwater: a comparative study. J Hazard Mater 117:141–147. doi: 10.1016/j.jhazmat.2004.09.027 Google Scholar
  95. Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815. doi: 10.1016/j.watres.2006.06.011 Google Scholar
  96. Nataraj SK, Hosamani KM, Aminabhavi TM (2006) Electrodialytic removal of nitrates and hardness from simulated mixtures using ion-exchange membranes. J Appl Polym Sci 99:1788–1794. doi: 10.1002/app.22710 Google Scholar
  97. Oh SE, Yoo YB, Young JC, Kim IS (2001) Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. J Biotechnol 92:1–8. doi: 10.1016/S0168-1656(01)00344-3 Google Scholar
  98. Ovez B (2006) Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochem 41:1289–1295. doi: 10.1016/j.procbio.2005.12.030 Google Scholar
  99. Park S, Yu J, Byun I, Cho S, Park T, Lee T (2011) Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions. Bioresour Technol 102:7265–7271. doi: 10.1016/j.biortech.2011.04.091 Google Scholar
  100. Pérez-González A, Urtiaga AM, Ibáñez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283. doi: 10.1016/j.watres.2011.10.046 Google Scholar
  101. Petrovic A, Simonic M (2015) Effect of Chlorella sorokiniana on the biological denitrification of drinking water. Environ Sci Pollut Res 22:5171–5183. doi: 10.1007/s11356-014-3745-3 Google Scholar
  102. Pirsaheb M, Khosravi T, Sharafi K, Mouradi M (2015) Comparing operational cost and performance evaluation of electrodialysis and reverse osmosis systems in nitrate removal from drinking water in Golshahr, Mashhad. Desalin Water Treat 57:12. doi: 10.1080/19443994.2015.1004592 Google Scholar
  103. Rautenbach R, Kopp W, Opbergen G, Hellekes R (1987) Nitrate reduction of well water by reverse osmosis and electrodialysis – studies on plant performance and costs. Desalination 65:241–258. doi: 10.1016/0011-9164(87)90137-8 Google Scholar
  104. Riaño B, Hernández D, García-González MC (2012) Microalgal-based systems for wastewater treatment: effect of applied organic and nutrient loading rate on biomass composition. Ecol Eng 49:112–117Google Scholar
  105. Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle – could enzymic regulation hold the key? Trends Biotechnol 27:388–397. doi: 10.1016/j.tibtech.2009.03.009 Google Scholar
  106. Rivetta MO, Bussb SR, Morganb P, Smith JWN, Bemmentb CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42(16):4215–4232. doi: 10.1016/j.watres.2008.07.020 Google Scholar
  107. Robertson WD, Blowes DW, Ptacek CJ, Cherry JA (2000) Long term performance of in situ reactive barriers for nitrate remediation. Groundwater 38:689–695. doi: 10.1111/j.1745-6584.2000.tb02704.x Google Scholar
  108. Ruppenthal S (2004) Treating water high in nitrate to supplement supply. J Am Water Works Ass 96:68–70Google Scholar
  109. Sahinkaya E, Dursun N (2012) Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement. Chemosphere 89:144–149. doi: 10.1016/j.chemosphere.2012.05.029 Google Scholar
  110. Sahinkaya E, Yurtsever A, Aktas O, Ucar D, Wang Z (2015) Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chem Eng J 268:180–186. doi: 10.1016/j.cej.2015.01.045 Google Scholar
  111. Sahinkaya E, Yurtsever A, Ucar D (2016) A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr (VI) and nitrate reduction. J Hazard Mater. doi: 10.1016/j.jhazmat.2016.02.032
  112. Sakakibara Y, Kuroda M (1993) Electric prompting and control of denitrification. Biotechnol Bioeng 42:535–537. doi: 10.1002/bit.260420418 Google Scholar
  113. Samatya S, Kabay N, Yuksel U, Arda M, Yuksel M (2006) Removal of nitrate from aqueous solution by nitrate selective ion exchangerResins. React Funct Polym 66:1206–1214. doi: 10.1016/j.reactfunctpolym.2006.03.009 Google Scholar
  114. Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC (2010a) Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecol Eng 36:1532–1543. doi: 10.1016/j.ecoleng.2010.04.008 Google Scholar
  115. Schoeman JJ, Steyn A (2003) Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 155:15–26. doi: 10.1016/S0011-9164(03)00235-2 Google Scholar
  116. Seitzinger SP, Mayorga E, Bouwman AF et al (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cy 24. doi: 10.1029/2009GB003587
  117. Sharma SK, Sobti RC (2012) Nitrate removal from ground water: a review. E-J Chem 9:1667–1675. doi: 10.1155/2012/154616 Google Scholar
  118. Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112:351–359. doi: 10.1016/S0269-7491(00)00147-0 Google Scholar
  119. Sierra-Alvarez R, Beristan-Cardoso R, Salazar M, Gomez J, Razo-Flores E, Field JA (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Res 41:1253–1262. doi: 10.1016/j.watres.2006.12.039 Google Scholar
  120. Smith RL, Buckwalter SP, Repert DA, Miller DN (2005) Small-scale hydrogen-oxidizing denitrifying bioreactor for treatment of nitrate-contaminated drinking water. Water Res 39:2014–2023. doi: 10.1016/j.watres.2005.03.024 Google Scholar
  121. Soares MIM (2000) Biological denitrification of groundwater. Water Air Soil Poll 123:183–193. doi: 10.1023/A:1005242600186 Google Scholar
  122. Sun Y, Nemati M (2012) Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresour Technol 114:207–216. doi: 10.1016/j.biortech.2012.03.061 Google Scholar
  123. Tsai HH, Ravindran V, Williams MD, Pirbazari M (2004) Forecasting the performance of membrane bioreactor process for groundwater denitrification. J Environ Eng Sci 3:507–521. doi: 10.1139/s04-013 Google Scholar
  124. USEPA (1987) Estimated national occurrence and exposure to nitrate and nitrite in public drinking water supplies. Washington, DC, United States Environmental Protection Agency, Office of Drinking WaterGoogle Scholar
  125. USEPA (2013) Introduction to in situ bioremediation of groundwater. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DCGoogle Scholar
  126. van der Hoek JP, van der Ven PJM, Klapwijk A (1988) Combined ion exchange/biological denitrification for nitrate removal from ground water under different process conditions. Water Res 22:679–684. doi: 10.1016/0043-1354(88)90178-9
  127. Vasiliadou IA, Pavlou S, Vayenas DV (2006) A kinetic study of hydrogenotrophic denitrification. Process Biochem 41:1401–1408. doi: 10.1016/j.procbio.2006.02.002 Google Scholar
  128. Verhoeven JTA, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21:96–103. doi: 10.1016/j.tree.2005.11.015 Google Scholar
  129. Volokita M, Belkin S, Abeliovich A, Soares MIM (1996b) Biological denitrification of drinking water using newspaper. Water Res 30:965–971. doi: 10.1016/0043-1354(95)00242-1 Google Scholar
  130. Waki T, Murayma KI, Kawato Y, Ichikawa K (1980) Transient characteristics of Paracoccus denitrificans with changes between aerobic and anaerobic conditions. J Ferment Technol 58:243–249Google Scholar
  131. Wang X, Xing L, Qiu T, Han M (2013) Simultaneous removal of nitrate and pentachlorophenol from simulated groundwater using a biodenitrification reactor packed with corncob. Environ Sci Pollut Res 20:2236–2243. doi: 10.1007/s11356-012-1092-9 Google Scholar
  132. Wang Z, Fei X, He S, Huang J, Zhou W (2017) Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water. Sci Total Environ 579:1706–1714. doi: 10.1016/j.scitotenv.2016.11.194 Google Scholar
  133. Weigelhofer G, Hein T (2015) Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water. Environ Sci Pollut Res 22:13534–13545. doi: 10.1007/s11356-015-4634-0 Google Scholar
  134. WHO (1985b) Health hazards from nitrate in drinking-water. Report on a WHO meeting, Copenhagen, 5–9 march 1984. WHO Regional Office for Europe, Copenhagen (Environmental Health Series No. 1)Google Scholar
  135. Zhang Y, Chen Y, Chen G (2003) Chemical denitrification of nitrate from groundwater. Huan Jing Ke Xue 24:9–12Google Scholar
  136. Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N (2011) Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. J Hazard Mater 192:1033–1039. doi: 10.1016/j.jhazmat.2011.06.008 Google Scholar
  137. Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur limestone. J Environ Sci 23:1761–1769. doi: 10.1016/S1001-0742(10)60635-3 Google Scholar
  138. Zou G, Papirio S, Lakaniemi AM, Ahoranta SH, Puhakka JA (2016) High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chem Eng J 284:1287–1294. doi: 10.1016/j.cej.2015.09.074 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.UNESCO Chair on Water Reuse, Biotechnology Group, School of Chemical Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Biotechnology Research Centre, Faculty of Chemical EngineeringSahand University of TechnologyTabrizIran
  3. 3.Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonRepublic of Korea

Personalised recommendations