Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 17, pp 15182–15186 | Cite as

Lanthanum-modified bentonite: potential for efficient removal of phosphates from fishpond effluents

  • Eyal KurzbaumEmail author
  • Yasmin Raizner
  • Oded Cohen
  • Guy Rubinstein
  • Oded Bar Shalom
Short Research and Discussion Article

Abstract

Adsorption has been suggested as an effective method for removing phosphates from agricultural wastewater effluents that contain relatively high phosphate concentrations. The present study focused on the use of a bentonite-lanthanum clay (Phoslock®) for reducing the dissolved phosphate concentration in fishpond effluents. Batch experiments with synthetic phosphate-spiked solutions and with fishpond effluents were performed in order to determine adsorption equilibrium isotherms and kinetics as well as to determine the efficiency of Phoslock® in removing phosphate from these solutions. In the synthetic phosphate-spiked solution, the mean maximum phosphate adsorption capacity was 92 mg Phoslock®/mg phosphate removal. A ratio of 50, 100, and 200 mg Phoslock®/mg phosphate removal was found for complete phosphate removal from the fishpond effluents, where higher doses of Phoslock® led to a faster removal rate (94% removal within the first 150 min). These results show that bentonite-lanthanum clay can be employed for designing a treatment process for efficient phosphate removal from fishpond effluents.

Keywords

Phosphate Adsorption Fishpond Aquaculture Water treatment Phoslock® 

Notes

Acknowledgements

The research was partially supported by research grants from the Israeli Ministry of Science, Technology and Space and Fisheries and Aquaculture Department, Israel Ministry of Agriculture and Rural Development.

References

  1. Agyei NM, Strydom CA, Potgieter JH (2002) The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends. Cem Concr Res 32:1889–1897. doi: 10.1016/S0008-8846(02)00888-8 CrossRefGoogle Scholar
  2. Barak Y, Van Rijn J (2000) Biological phosphate removal in a prototype recirculating aquaculture treatment system. Aquac Eng 22:121–136. doi: 10.1016/S0144-8609(00)00036-4 CrossRefGoogle Scholar
  3. Cheung KC, Venkitachalam TH (2000) Improving phosphate removal of sand infiltration system using alkaline fly ash. Chemosphere 41:243–249. doi: 10.1016/S0045-6535(99)00417-8 CrossRefGoogle Scholar
  4. Dithmer L, Lipton AS, Reitzel K et al (2015) Characterization of phosphate sequestration by a lanthanum modified bentonite clay: a solid-state NMR, EXAFS, and PXRD study. Environ Sci Technol 49:4559–4566. doi: 10.1021/es506182s CrossRefGoogle Scholar
  5. Fernandez-Mena H, Nesme T, Pellerin S (2016) Towards an agro-industrial ecology: a review of nutrient flow modelling and assessment tools in agro-food systems at the local scale. Sci Total Environ 543:467–479. doi: 10.1016/j.scitotenv.2015.11.032 CrossRefGoogle Scholar
  6. Genz A, Kornmüller A, Jekel M (2004) Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Res 38:3523–3530. doi: 10.1016/j.watres.2004.06.006 CrossRefGoogle Scholar
  7. Haghseresht F, Wang S, Do DD (2009) A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Appl Clay Sci 46:369–375. doi: 10.1016/j.clay.2009.09.009 CrossRefGoogle Scholar
  8. Imai A, Fukushima T, Matsushige K et al (2002) Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Res 36:859–870. doi: 10.1016/S0043-1354(01)00283-4 CrossRefGoogle Scholar
  9. Kioussis DR, Wheaton FW, Kofinas P (1999) Phosphate binding polymeric hydrogels for aquaculture wastewater remediation. Aquac Eng 19:163–178. doi: 10.1016/S0144-8609(98)00049-1 CrossRefGoogle Scholar
  10. Kurzbaum E, Bar Shalom O (2016) The potential of phosphate removal from dairy wastewater and municipal wastewater effluents using a lanthanum-modified bentonite. Appl Clay Sci 123:182–186. doi: 10.1016/j.clay.2016.01.038 CrossRefGoogle Scholar
  11. Lekang OI, Marie Bomo A, Svendsen I (2000) Biological lamella sedimentation used for wastewater treatment. Aquac Eng 24:115–127. doi: 10.1016/S0144-8609(00)00068-6 CrossRefGoogle Scholar
  12. Li H, Ru J, Yin W et al (2009) Removal of phosphate from polluted water by lanthanum doped vesuvianite. J Hazard Mater 168:326–330. doi: 10.1016/j.jhazmat.2009.02.025 CrossRefGoogle Scholar
  13. Liu CJ, LI YZ, LUAN ZK et al (2007) Adsorption removal of phosphate from aqueous solution by active red mud. J Environ Sci 19:1166–1170. doi: 10.1016/S1001-0742(07)60190-9 CrossRefGoogle Scholar
  14. Mortula MM, Gagnon GA (2007) Alum residuals as a low technology for phosphorus removal from aquaculture processing water. Aquac Eng 36:233–238. doi: 10.1016/j.aquaeng.2006.12.003 CrossRefGoogle Scholar
  15. Özacar M (2003) Adsorption of phosphate from aqueous solution onto alunite. Chemosphere 51:321–327. doi: 10.1016/S0045-6535(02)00847-0 CrossRefGoogle Scholar
  16. Rice WE, Baird BR, Eaton AD, Clesceri LS (2012) Standard methods for the examination of water and wastewater, 22nd ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USAGoogle Scholar
  17. Robb M, Greenop B, Goss Z et al (2003) Application of Phoslock™, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. Hydrobiologia 494:237–243. doi: 10.1023/A:1025478618611 CrossRefGoogle Scholar
  18. Ross G, Haghseresht F, Cloete TE (2008) The effect of pH and anoxia on the performance of Phoslock®, a phosphorus binding clay. Harmful Algae 7:545–550. doi: 10.1016/j.hal.2007.12.007 CrossRefGoogle Scholar
  19. Sakadevan K, Bavor HJ (1998) Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Res 32:393–399. doi: 10.1016/S0043-1354(97)00271-6 CrossRefGoogle Scholar
  20. SePRO.com (n.d.) http://www.sepro.com/ Accessed 12 Apr 2017
  21. Sharma R, Dwivedi S, Hristovski K, Wu Y (2013) Green materials for sustainable water remediation and treatment (no. 23). In: A. Mishra, J. H. Clark, G. A. Kraus, P. R. Seidl, A. Stankiewicz, & Y. Kou (Eds.). Royal Society of Chemistry.Google Scholar
  22. Shin EW, Karthikeyan KG, Tshabalala MA (2005) Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents. Environ Sci Technol 39:6273–6279. doi: 10.1021/es048018n CrossRefGoogle Scholar
  23. Stauber J, Binet M (2000) Canning River Phoslock field trials—ecotoxicity testing final report. CSIRO & the WA Waters and Rivers Commission. Report No:ET 317RGoogle Scholar
  24. Tanada S, Kabayama M, Kawasaki N et al (2003) Removal of phosphate by aluminum oxide hydroxide. J Colloid Interface Sci 257:135–140. doi: 10.1016/S0021-9797(02)00008-5 CrossRefGoogle Scholar
  25. Teermann I, Jekel M (1999) Adsorption of humic substances onto ß-FeOOH and its chemical regeneration. Water Sci Technol 40:199–206. doi: 10.1016/S0273-1223(99)00657-5 CrossRefGoogle Scholar
  26. Wang S-L, Cheng C-Y, Tzou Y-M et al (2007) Phosphate removal from water using lithium intercalated gibbsite. J Hazard Mater 147:205–212. doi: 10.1016/j.jhazmat.2006.12.067 CrossRefGoogle Scholar
  27. Withers PJA, van Dijk KC, Neset TSS et al (2015) Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44:193–206. doi: 10.1007/s13280-014-0614-8 CrossRefGoogle Scholar
  28. Ye H, Chen F, Sheng Y et al (2006) Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep Purif Technol 50:283–290. doi: 10.1016/j.seppur.2005.12.004 CrossRefGoogle Scholar
  29. Zamparas M, Gianni A, Stathi P et al (2012) Removal of phosphate from natural waters using innovative modified bentonites. Appl Clay Sci 62–63:101–106. doi: 10.1016/j.clay.2012.04.020 CrossRefGoogle Scholar
  30. Zamparas M, Gavriil G, Coutelieris FA, Zacharias I (2015) A theoretical and experimental study on the P-adsorption capacity of Phoslock™. Appl Surf Sci 335:147–152. doi: 10.1016/j.apsusc.2015.02.042 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Shamir Research InstituteUniversity of HaifaKatzrinIsrael
  2. 2.Fisheries and Aquaculture DepartmentIsrael Ministry of Agriculture and Rural DevelopmentBeit DaganIsrael

Personalised recommendations