Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 1103–1112 | Cite as

Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors

  • Benny Marie B. Ensano
  • Laura Borea
  • Vincenzo NaddeoEmail author
  • Mark Daniel G. de Luna
  • Vincenzo Belgiorno
Water Industry: Water-Energy-Health Nexus


This study investigates the removal of selected pharmaceuticals, as recalcitrant organic compounds, from synthetic wastewater using an electro-membrane bioreactor (eMBR). Diclofenac (DCF), carbamazepine (CBZ), and amoxicillin (AMX) were selected as representative drugs from three different therapeutic groups such as anti-inflammatory, anti-epileptic, and antibiotic, respectively. An environmentally relevant concentration (10 μg/L) of each compound was spiked into the synthetic wastewater, and then, the impact of appending electric field on the control of membrane fouling and the removal of conventional contaminants and pharmaceutical micropollutants were assessed. A conventional membrane bioreactor (MBR) was operated as a control test. A reduction of membrane fouling was observed in the eMBR with a 44% decrease of the fouling rate and a reduction of membrane fouling precursors. Humic substances (UV254), ammonia nitrogen (NH4-N), and orthophosphate (PO4-P) showed in eMBR removal efficiencies up to 90.68 ± 4.37, 72.10 ± 13.06, and 100%, respectively, higher than those observed in the MBR. A reduction of DCF, CBZ, and AMX equal to 75.25 ± 8.79, 73.84 ± 9.24, and 72.12 ± 10.11%, respectively, was found in the eMBR due to the enhanced effects brought by electrochemical processes, such as electrocoagulation, electrophoresis, and electrooxidation.


Diclofenac (DCF) Carbamazepine (CBZ) Amoxicillin (AMX) Pharmaceuticals Electro-membrane bioreactor (eMBR) Membrane fouling Fouling precursors 



This study was partially funded by the FARB project of the University of Salerno (UNISA). The authors would like to acknowledge the Sanitary and Environmental Engineering Division (SEED) Laboratory of Civil Engineering Department in UNISA for providing the facilities and research fund. We also thank the University of the Philippines-Diliman and the Engineering Research and Development for Technology (ERDT) through the Department of Science and Technology-Philippines for the Ph.D. Scholarship Grant and Sandwich Program being awarded to BMB Ensano. The authors also deeply appreciate the following individuals who helped for the completion of the experiment: Dr. A. Farina, P. Napodano, and E. Apolito for their technical assistance in the SEED laboratory and Prof. E. Reverchon and Dr. M. Scognamiglio for their laboratory support in zeta potential and PSD analyses at the Laboratory of Chemical Engineering of Industrial Engineering Department in UNISA. The authors gratefully thank GE/Zenon Membrane Solution for donating the membrane modules used in the laboratory scale plant. VN, VB, and MDL developed the research idea and planned the research activities; BME and LB carried out the research activities and prepared the manuscript; and VN and MDL reviewed the manuscript and supervised the research activities. VB reviewed the final draft of the manuscript.


  1. Acero JL, Benitez FJ, Real FJ, Teva F (2016) Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chem Eng J 289:48–58. doi: 10.1016/j.cej.2015.12.082 CrossRefGoogle Scholar
  2. Andreozzi R, Caprio V, Ciniglia C et al (2004) Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ Sci Technol 38:6832–6838. doi: 10.1021/es049509a CrossRefGoogle Scholar
  3. APAT and CNR-IRSA (2003) Metodi analitici per le acque. Manuali e Linee Guida 29/2003Google Scholar
  4. Bani-Melhem K, Elektorowicz M (2010) Development of a novel submerged membrane electro-bioreactor (SMEBR): performance for fouling reduction. Environ Sci Technol 44:3298–3304. doi: 10.1021/es902145g CrossRefGoogle Scholar
  5. Bani-Melhem K, Elektorowicz M (2011) Performance of the submerged membrane electro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction. J Membr Sci 379:434–439. doi: 10.1016/j.memsci.2011.06.017 CrossRefGoogle Scholar
  6. Bani-Melhem K, Smith E (2012) Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chem Eng J 198–199:201–210. doi: 10.1016/j.cej.2012.05.065 CrossRefGoogle Scholar
  7. Borea L, Naddeo V, Belgiorno V (2017) Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control. Environ Sci Pollut Res 24:321–333. doi: 10.1007/s11356-016-7786-7 CrossRefGoogle Scholar
  8. Chawaloesphosiya N, Mongkolnauwarat J, Prommajun C et al (2015) Treatment of cutting-oily wastewater by electrocoagulation-flotation (ECF) process: modeling approach. Environ Eng Res 20:392–396. doi: 10.4491/eer.2015.085 CrossRefGoogle Scholar
  9. Chen J-P, Yang C-Z, Zhou J-H, Wang X-Y (2007) Study of the influence of the electric field on membrane flux of a new type of membrane bioreactor. Chem Eng J 128:177–180. doi: 10.1016/j.cej.2006.10.010 CrossRefGoogle Scholar
  10. de la Torre T, Lesjean B, Drews A, Kraume M (2008) Monitoring of transparent exopolymer particles (TEP) in a membrane bioreactor (MBR) and correlation with other fouling indicators. Water Sci Technol 58:1903–1909. doi: 10.2166/wst.2008.752 CrossRefGoogle Scholar
  11. Díaz O, Vera L, González E et al (2016) Effect of sludge characteristics on membrane fouling during start-up of a tertiary submerged membrane bioreactor. Environ Sci Pollut Res Int 23:8951–8962. doi: 10.1007/s11356-016-6138-y CrossRefGoogle Scholar
  12. Drews A, Vocks M, Bracklow U et al (2008) Does fouling in MBRs depend on SMP? Desalination 231:141–149. doi: 10.1016/j.desal.2007.11.042 CrossRefGoogle Scholar
  13. DuBois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  14. Dutta K, Lee M-Y, Lai WW-P et al (2014) Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresour Technol 165:42–49. doi: 10.1016/j.biortech.2014.03.054 CrossRefGoogle Scholar
  15. Elabbas S, Ouazzani N, Mandi L et al (2016) Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminium used for the electrode. J Hazard Mater 319:69–77. doi: 10.1016/j.jhazmat.2015.12.067 CrossRefGoogle Scholar
  16. Ensano BMB, Borea L, Naddeo V et al (2016) Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: a review. Front Environ Sci. doi: 10.3389/fenvs.2016.00057 Google Scholar
  17. Ensano BMB, Borea L, Naddeo V et al (2017) Removal of pharmaceuticals from wastewater by intermittent electrocoagulation. Water 9:85. doi: 10.3390/w9020085 CrossRefGoogle Scholar
  18. Fan H, Li J, Zhang L, Feng L (2014) Contribution of sludge adsorption and biodegradation to the removal of five pharmaceuticals in a submerged membrane bioreactor. Biochem Eng J 88:101–107. doi: 10.1016/j.bej.2014.04.008 CrossRefGoogle Scholar
  19. Frølund B, Griebe T, Nielsen PH (1995) Enzymatic activity in the activated-sludge floc matrix. Appl Microbiol Biotechnol 43:755–761CrossRefGoogle Scholar
  20. Ganzenko O, Huguenot D, van Hullebusch ED et al (2014) Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res 21:8493–8524. doi: 10.1007/s11356-014-2770-6 CrossRefGoogle Scholar
  21. Giwa A, Hasan SW (2015) Numerical modeling of an electrically enhanced membrane bioreactor (MBER) treating medium-strength wastewater. J Environ Manag 164:1–9. doi: 10.1016/j.jenvman.2015.08.031 CrossRefGoogle Scholar
  22. Giwa A, Ahmed I, Hasan SW (2015) Enhanced sludge properties and distribution study of sludge components in electrically-enhanced membrane bioreactor. J Environ Manag 159:78–85. doi: 10.1016/j.jenvman.2015.05.035 CrossRefGoogle Scholar
  23. Giwa A, Daer S, Ahmed I et al (2016) Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment. J Water Process Eng 11:88–97. doi: 10.1016/j.jwpe.2016.03.011 CrossRefGoogle Scholar
  24. Han X, Wang Z, Ma J et al (2015) Membrane bioreactors fed with different COD/N ratio wastewater: impacts on microbial community, microbial products, and membrane fouling. Environ Sci Pollut Res Int 22:11436–11445. doi: 10.1007/s11356-015-4376-z CrossRefGoogle Scholar
  25. Hasan SW, Elektorowicz M, Oleszkiewicz JA (2012) Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR). Bioresour Technol 120:199–205. doi: 10.1016/j.biortech.2012.06.043 CrossRefGoogle Scholar
  26. Hong H, Peng W, Zhang M et al (2013) Bioresource technology thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications. Bioresour Technol 146:7–14. doi: 10.1016/j.biortech.2013.07.040 CrossRefGoogle Scholar
  27. Hosseinzadeh M, Bidhendi GN, Torabian A et al (2015) A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation. Bioresour Technol 192:177–184. doi: 10.1016/j.biortech.2015.05.066 CrossRefGoogle Scholar
  28. Houtman CJ, Kroesbergen J, Lekkerkerker-Teunissen K, van der Hoek JP (2014) Human health risk assessment of the mixture of pharmaceuticals in Dutch drinking water and its sources based on frequent monitoring data. Sci Total Environ 496:54–62. doi: 10.1016/j.scitotenv.2014.07.022 CrossRefGoogle Scholar
  29. Hu D, Wang L (2016) Adsorption of amoxicillin onto quaternized cellulose from flax noil: kinetic, equilibrium and thermodynamic study. J Taiwan Inst Chem Eng 64:227–234. doi: 10.1016/j.jtice.2016.04.028 CrossRefGoogle Scholar
  30. Hua L-C, Huang C, Su Y-C et al (2015) Effects of electro-coagulation on fouling mitigation and sludge characteristics in a coagulation-assisted membrane bioreactor. J Membr Sci 495:29–36. doi: 10.1016/j.memsci.2015.07.062 CrossRefGoogle Scholar
  31. Ibeid S, Elektorowicz M, Oleszkiewicz JA (2013) Novel electrokinetic approach reduces membrane fouling. Water Res 47:6358–6366. doi: 10.1016/j.watres.2013.08.007 CrossRefGoogle Scholar
  32. Ibeid S, Elektorowicz M, Oleszkiewicz JA (2015) Electro-conditioning of activated sludge in a membrane electro-bioreactor for improved dewatering and reduced membrane fouling. J Membr Sci 494:136–142. doi: 10.1016/j.memsci.2015.07.051 CrossRefGoogle Scholar
  33. Inyang M, Flowers R, McAvoy D, Dickenson E (2016) Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system. Bioresour Technol 216:778–784. doi: 10.1016/j.biortech.2016.05.124 CrossRefGoogle Scholar
  34. Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health B Crit Rev 10:559–573. doi: 10.1080/15287390600975137 CrossRefGoogle Scholar
  35. Kim SD, Cho J, Kim IS et al (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021. doi: 10.1016/j.watres.2006.06.034 CrossRefGoogle Scholar
  36. Kim H-G, Jang H-N, Kim H-M et al (2010) Effect of an electro phosphorous removal process on phosphorous removal and membrane permeability in a pilot-scale MBR. Desalination 250:629–633. doi: 10.1016/j.desal.2009.09.038 CrossRefGoogle Scholar
  37. Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284:17–53. doi: 10.1016/j.memsci.2006.08.019 CrossRefGoogle Scholar
  38. Li X-G, Cao H-B, Wu J-C, Yu K-T (2001) Inhibition of the metabolism of nitrifying bacteria by direct electric current. Biotechnol Lett 23:705–709. doi: 10.1023/A:1010346501857 CrossRefGoogle Scholar
  39. Li X, Gao F, Hua Z et al (2005) Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling. Sep Purif Technol 46:19–25. doi: 10.1016/j.seppur.2005.04.003 CrossRefGoogle Scholar
  40. Li J, Zhang X, Cheng F, Liu Y (2013) New insights into membrane fouling in submerged MBR under sub-critical flux condition. Bioresour Technol 137:404–408. doi: 10.1016/j.biortech.2013.03.158 CrossRefGoogle Scholar
  41. Li C, Cabassud C, Reboul B, Guigui C (2015) Effects of pharmaceutical micropollutants on the membrane fouling of a submerged MBR treating municipal wastewater: case of continuous pollution by carbamazepine. Water Res 69:183–194. doi: 10.1016/j.watres.2014.11.027 CrossRefGoogle Scholar
  42. Lin SH, Wu CL (1996) Electrochemical removal of nitrite and ammonia for aquaculture. Water Res 30:715–721. doi: 10.1016/0043-1354(95)00208-1 CrossRefGoogle Scholar
  43. Lin H, Zhang M, Wang F et al (2014) A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. J Membr Sci 460:110–125. doi: 10.1016/j.memsci.2014.02.034 CrossRefGoogle Scholar
  44. Liu Y-J, Lo S-L, Liou Y-H, Hu C-Y (2015) Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation–flotation with a cationic surfactant. Sep Purif Technol 152:148–154. doi: 10.1016/j.seppur.2015.08.015 CrossRefGoogle Scholar
  45. Morgan JW, Forster CF, Evison L (1990) A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res 24:743–750. doi: 10.1016/0043-1354(90)90030-A CrossRefGoogle Scholar
  46. Naddeo V, Meriç S, Kassinos D et al (2009) Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Res 43:4019–4027. doi: 10.1016/j.watres.2009.05.027 CrossRefGoogle Scholar
  47. Nghiem LD, Schäfer AI, Elimelech M (2006) Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J Membr Sci 286:52–59. doi: 10.1016/j.memsci.2006.09.011 CrossRefGoogle Scholar
  48. Nguyen LN, Hai FI, Kang J et al (2013) Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeterior Biodegrad 85:474–482. doi: 10.1016/j.ibiod.2013.03.014 CrossRefGoogle Scholar
  49. Padilla-Robles BG, Alonso A, Martínez-Delgadillo SA et al (2015) Electrochemical degradation of amoxicillin in aqueous media. Chem Eng Process Process Intensif 94:93–98. doi: 10.1016/j.cep.2014.12.007 CrossRefGoogle Scholar
  50. Pan X, Deng C, Zhang D et al (2008) Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. Aquat Toxicol 89:207–213. doi: 10.1016/j.aquatox.2008.06.018 CrossRefGoogle Scholar
  51. Phan HV, Hai FI, McDonald JA et al (2015) Nutrient and trace organic contaminant removal from wastewater of a resort town: comparison between a pilot and a full scale membrane bioreactor. Int Biodeterior Biodegrad 102:40–48. doi: 10.1016/j.ibiod.2015.02.010 CrossRefGoogle Scholar
  52. Prado M, Borea L, Cesaro A et al (2017) Removal of emerging contaminant and fouling control in membrane bioreactors by combined ozonation and sonolysis. Int Biodeterior Biodegrad 119:577–586. doi: 10.1016/j.ibiod.2016.10.044 CrossRefGoogle Scholar
  53. Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664. doi: 10.1016/j.watres.2005.04.068 CrossRefGoogle Scholar
  54. Reif R, Suárez S, Omil F, Lema JM (2008) Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination 221:511–517. doi: 10.1016/j.desal.2007.01.111 CrossRefGoogle Scholar
  55. Richardson SD (2009) Water analysis: emerging contaminants and current issues. Anal Chem 81:4645–4677. doi: 10.1021/ac9008012 CrossRefGoogle Scholar
  56. Schwaiger J, Ferling H, Mallow U et al (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150. doi: 10.1016/j.aquatox.2004.03.014 CrossRefGoogle Scholar
  57. Secondes MFN, Naddeo V, Belgiorno V, Ballesteros F Jr (2014) Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation. J Hazard Mater 264:342–349. doi: 10.1016/j.jhazmat.2013.11.039 CrossRefGoogle Scholar
  58. Tadkaew N, Hai FI, McDonald JA et al (2011) Removal of trace organics by MBR treatment: the role of molecular properties. Water Res 45:2439–2451. doi: 10.1016/j.watres.2011.01.023 CrossRefGoogle Scholar
  59. Tafti AD, Seyyed Mirzaii SM, Andalibi MR, Vossoughi M (2015) Optimized coupling of an intermittent DC electric field with a membrane bioreactor for enhanced effluent quality and hindered membrane fouling. Sep Purif Technol 152:7–13. doi: 10.1016/j.seppur.2015.07.004 CrossRefGoogle Scholar
  60. Teijon G, Candela L, Tamoh K et al (2010) Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 408:3584–3595. doi: 10.1016/j.scitotenv.2010.04.041 CrossRefGoogle Scholar
  61. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers1. Water Res 32:3245–3260. doi: 10.1016/S0043-1354(98)00099-2 CrossRefGoogle Scholar
  62. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155. doi: 10.1016/j.scitotenv.2012.04.028 CrossRefGoogle Scholar
  63. Vernouillet G, Eullaffroy P, Lajeunesse A et al (2010) Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere 80:1062–1068. doi: 10.1016/j.chemosphere.2010.05.010 CrossRefGoogle Scholar
  64. Wang A, Qu J, Liu H, Ge J (2004) Degradation of azo dye acid red 14 in aqueous solution by electrokinetic and electrooxidation process. Chemosphere 55:1189–1196. doi: 10.1016/j.chemosphere.2004.01.024 CrossRefGoogle Scholar
  65. Wang T, Zhao H, Wang H et al (2016) Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment. Chemosphere 155:94–99. doi: 10.1016/j.chemosphere.2016.03.140 CrossRefGoogle Scholar
  66. Wei V, Oleszkiewicz JA, Elektorowicz M (2009) Nutrient removal in an electrically enhanced membrane bioreactor. Water Sci Technol 60:3159–3163. doi: 10.2166/wst.2009.625 CrossRefGoogle Scholar
  67. Yang PY, Cao K, Kim SJ (2002) Entrapped mixed microbial cell process for combined secondary and tertiary wastewater treatment. Water Environ Res 74:226–234CrossRefGoogle Scholar
  68. Yehya T, Favier L, Kadmi Y et al (2015) Removal of carbamazepine by electrocoagulation: Investigation of some key operational parametersGoogle Scholar
  69. Yuan H, He Z (2015) Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review. Bioresour Technol 195:202–209. doi: 10.1016/j.biortech.2015.05.058 CrossRefGoogle Scholar
  70. Zeyoudi M, Altenaiji E, Ozer LY et al (2015) Impact of continuous and intermittent supply of electric field on the function and microbial community of wastewater treatment electro-bioreactors. Electrochim Acta 181:271–279. doi: 10.1016/j.electacta.2015.04.095 CrossRefGoogle Scholar
  71. Zhang X, Bishop PL (2003) Biodegradability of biofilm extracellular polymeric substances. Chemosphere 50:63–69. doi: 10.1016/S0045-6535(02)00319-3 CrossRefGoogle Scholar
  72. Zhang J, Satti A, Chen X et al (2015) Low-voltage electric field applied into MBR for fouling suppression: performance and mechanisms. Chem Eng J 273:223–230. doi: 10.1016/j.cej.2015.03.044 CrossRefGoogle Scholar
  73. Zhao X, Hou Y, Liu H et al (2009) Electro-oxidation of diclofenac at boron doped diamond: kinetics and mechanism. Electrochim Acta 54:4172–4179. doi: 10.1016/j.electacta.2009.02.059 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Environmental Engineering Program, National Graduate School of EngineeringUniversity of the PhilippinesQuezon CityPhilippines
  2. 2.Sanitary Environmental Engineering Division (SEED), Department of Civil EngineeringUniversity of SalernoFiscianoItaly
  3. 3.Department of Chemical EngineeringUniversity of the PhilippinesQuezon CityPhilippines

Personalised recommendations