Environmental Science and Pollution Research

, Volume 24, Issue 17, pp 14735–14747 | Cite as

Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes

  • Daniela IannazzoEmail author
  • Alessandro Pistone
  • Ida Ziccarelli
  • Claudia Espro
  • Signorino Galvagno
  • Salvatore V Giofré
  • Roberto Romeo
  • Nicola Cicero
  • Giuseppe D Bua
  • Giuseppe Lanza
  • Laura Legnani
  • Maria A ChiacchioEmail author
Research Article


Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb2+, Hg2+, and Ni2+ and the harmless Ca2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.


Multi-walled carbon nanotubes Triazole-based dendrimers α-Aminophosphonates Heavy metal chelators DFT calculations Wastewater treatment 


  1. Abas SNA, Ismail MHS, Kamal ML, Izhar S (2013) Adsorption process of heavy metals by low-cost adsorbent: a review. WASJ 28:1518–1530Google Scholar
  2. Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res 50:13589–13613CrossRefGoogle Scholar
  3. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem 19:404–417CrossRefGoogle Scholar
  4. Becke ADJ (1993) Density-functional thermochemistry. III The role of exact exchange Chem Phys 98:5648–5652Google Scholar
  5. Borba CE, Guirardello R, Silva EA, Veit MT, Tavares CRG (2006) Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Bio Chem Eng J 30:184–191Google Scholar
  6. Bua GD, Annuario G, Albergamo A, Cicero N, Dugo G (2016) Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry. Food Addit Contam Part B Surveill 9:210–216CrossRefGoogle Scholar
  7. Cancés E, Mennucci B, Tomasi JJ (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. Chem Phys 107:3032–3042Google Scholar
  8. Carminati DM, Intrieri D, Caselli A, Le Gac S, Boitrel B, Toma L, Legnani L, Gallo E (2016) Designing ‘Totem’ C2-symmetrical iron porphyrin catalysts for stereoselective cyclopropanations. Chem Eur J 22:13599–13612CrossRefGoogle Scholar
  9. Catelani G, D’Andrea F, Griselli A, Guazzelli L, Legnani L, Toma L (2008) A new stereoselective approach to a selectively protected derivative of D-pinitol and its evaluation as alpha-L-rhamnopyranose mimetic. Tetrahedron Lett 49:4534–4536CrossRefGoogle Scholar
  10. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335CrossRefGoogle Scholar
  11. Devaraj M, Saravanan R, Deivasigamani R, Gupta VK, Gracia F, Jayadevan S (2016) Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J Mol Liquids 221:930–941CrossRefGoogle Scholar
  12. Di Bella G, Potortì AG, Lo Turco V, Bua GD, Licata P, Cicero N, Dugo G (2015) Trace elements in Thunnus thynnus from Mediterranean Sea and benefit–risk assessment for consumers. Food Addit Contam Part B Surveill 8:175–818CrossRefGoogle Scholar
  13. Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WAI, Johnson JH (2004) Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651CrossRefGoogle Scholar
  14. Donato MG, Galvagno S, Lanza M, Messina G, Milone C, Piperopoulos E, Pistone A, Santangelo S (2009) Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes. J Nanosci Nanotechnol 9:3815–3823CrossRefGoogle Scholar
  15. Eccles H (1999) Treatment of metal-contaminated wastes: why select a biological process? Trends Biotechnol 17:462–465CrossRefGoogle Scholar
  16. Fialova D, Kremplova M, Melichar L, Kopel P, Hynek D, Adam V, Kizek R (2014) Interaction of heavy metal ions with carbon and iron based particles. Materials 7:2242–2256CrossRefGoogle Scholar
  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmannn RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc, Wallingford CTGoogle Scholar
  18. Gallo E, Rose E, Boitrel B, Legnani L, Toma L (2014) DFT conformational studies of chiral bis-binaphthyl porphyrins and their metal complexes employed as cyclopropanation catalysts. Organometallics 33:6081–6088CrossRefGoogle Scholar
  19. Graci S, Collura R, Cammilleri G, Buscemi MD, Giangrosso G, Principato D, Gervasi T, Cicero N, Ferrantelli V (2016) Mercury accumulation in Mediterranean fish and cephalopods species of Sicilian coasts: correlation between pollution and the presence of Anisakis parasites. Nat Prod Res. doi: 10.1080/14786419.2016.1230119 Google Scholar
  20. Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. JMESS 1:12–18Google Scholar
  21. Gupta VK, Srivastava SK, Mohan D, Sharma S (1998) Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manag 17:517–522CrossRefGoogle Scholar
  22. Gupta VK, Agarwal S, Saleh TA (2011a) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23CrossRefGoogle Scholar
  23. Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M (2011b) Removal of the hazardous dye tartrazine by photodegradation on titanium dioxide surface. Mater SciEng C 31:1062–1067CrossRefGoogle Scholar
  24. Gupta VK, Nayak A (2012) Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. ChemEng J 180:81–90Google Scholar
  25. Gupta VK, Ali I, Saleh TA, Nayaka A, Agarwalc S (2012a) Chemical treatment technologies for waste-water recycling an overview. RSC Adv 2:6380–6388CrossRefGoogle Scholar
  26. Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012b) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17CrossRefGoogle Scholar
  27. Gupta VK, Mittal A, Jharec D, Mittal J (2012c) Batch and bulk removal of hazardous colouring agent Rose Bengal by adsorption techniques using bottom ash as adsorbent. RSC Adv 2:8381–8389CrossRefGoogle Scholar
  28. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013a) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193-194:24–34CrossRefGoogle Scholar
  29. Gupta VK, Saleh TA (2013b) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843CrossRefGoogle Scholar
  30. Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:001–018CrossRefGoogle Scholar
  31. Gupta VK, Moradi TI, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf ASH, Goodarzi M, Garshasbi A (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46:93–118CrossRefGoogle Scholar
  32. Han J, Gao C (2010) Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett 2:213–226CrossRefGoogle Scholar
  33. Hemamalini H, Mudedla SK, Subramanian V, Das TM (2015) Design, synthesis and metal sensing studies of ether-linked bis-triazole derivatives. New J Chem 39:3777–3784CrossRefGoogle Scholar
  34. Iannazzo D, Brunaccini E, Giofrè SV, Piperno A, Romeo G, Ronsisvalle S, Chiacchio MA, Lanza G, Chiacchio U (2010) Competitive formation of β-enaminones and 3-amino-2(5H)-furanones from the isoxazolidine system: a combined synthetic and quantum chemical study. Eur J Org Chem 30:5897–5905CrossRefGoogle Scholar
  35. Iannazzo D, Pistone A, Visco A, Galtieri G, Giofrè SV, Romeo R, Romeo G, Cappello S, Bonsignore M, Denaro R, Galvagno S (2015a) 1,2,3-Triazole/MWCNT conjugates as filler for gelcoat nanocomposites: new active antibiofouling coatings for marine application. Mater Res Express 2:115001 (13 pp).Google Scholar
  36. Iannazzo D, Pistone A, Galvagno S, Ferro S, De Luca L, Monforte AM, Da Ros T, Hadad C, Prato M, Pannecouque C (2015b) Synthesis and anti-HIV activity of carboxylated and drug-conjugated multi-walled carbon nanotubes. Carbon 82:548–561CrossRefGoogle Scholar
  37. Jain AK, Gupta VK, Bhatnagar A, Suhas (2003) A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep SciTechnol 38:463–481CrossRefGoogle Scholar
  38. Karthikeyan S, Gupta VK, Boopathy R, Titus A, Sekaran G (2012) A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J Mol Liquids 173:153–163CrossRefGoogle Scholar
  39. Khania H, Rofouei MK, Arabb P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater 183:402–409CrossRefGoogle Scholar
  40. Kiss T, Làzàr I, Kafarski P (1994) Chelating tendencies of bioactive aminophosphonates. Met Based Drugs 1:247–264CrossRefGoogle Scholar
  41. Knight AS, Zhou EY, Pelton JG, Francis MB (2013) Selective chromium(VI) ligands identified using combinatorial peptoid libraries. J Am Chem Soc 135:17488–17493CrossRefGoogle Scholar
  42. Kosa SA, Al-Zhrani G, Salama MA (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J181:159–168CrossRefGoogle Scholar
  43. Legnani L, Lunghi C, Marinone Albini F, Nativi C, Richichi B, Toma L (2007) Alternative mechanistic paths in the hetero-Diels–Alder reaction of α-oxothiones: a theoretical study. Eur J Org Chem 21:3547–3554CrossRefGoogle Scholar
  44. Lo Turco V, Di Bella G, Furci P, Cicero N, Pollicino G, Dugo G (2013) Heavy metals content by ICP-OES in Sarda sarda, Sardinella aurita and Lepidopus caudatus from the Strait of Messina (Sicily, Italy). Nat Prod Res 27:518–523CrossRefGoogle Scholar
  45. Luparia M, Legnani L, Porta A, Zanoni G, Toma L, Vidari G (2009) Enantioselective synthesis and olfactory evaluation of bicyclic α- and γ-ionone derivatives: the 3D arrangement of key molecular features relevant to the violet odor of ionones. J Org Chem 74:7100–7110CrossRefGoogle Scholar
  46. Masciocchi D, Villa S, Meneghetti F, Pedretti A, Barlocco D, Legnani L, Toma L, Kwon BM, Nakano S, Asai A, Gelain A (2012) Biological and computational evaluation of anoxadiazole derivative (MD77) as a new lead for direct STAT3 inhibitors. Med Chem Commun 3:592–599CrossRefGoogle Scholar
  47. Matczak-Jon E, Kurzak B, Kamecka A, Sawka-Dobrowolska W, Kafarski P (1999) Interactions of zinc(II), magnesium(II) and calcium(II) with iminodimethylene diphosphonic acids in aqueous solutions. J Chem Soc Dalton Trans:3627–3637Google Scholar
  48. Mittal A, Kaur D, Malviya A, Mittal J, Gupta VK (2009a) Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J Colloid Interface Sci 337:345–354CrossRefGoogle Scholar
  49. Mittal A, Mittal J, Malviya A, Gupta VK (2009b) Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J Colloid Interface Sci 340:16–26CrossRefGoogle Scholar
  50. Mittal A, Mittal J, Malviya A, Gupta VK (2010a) Removal and recovery of chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344:497–507CrossRefGoogle Scholar
  51. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010b) Decoloration treatment of a hazardous triarylmethane dye, light green SF (yellowish) by waste material adsorbents. J Colloid Interface Sci 342:518–527CrossRefGoogle Scholar
  52. Moedritzer K, Irani RR (1966) The direct synthesis of α-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous acid. J Am Chem Soc 31:1603–1607Google Scholar
  53. Mohammadi N, Khani H, Gupta VK, Amereh E, Agarwal S (2011) Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J Colloid Interface Sci 362:457–462CrossRefGoogle Scholar
  54. Mohod CV, Dhote J (2013) Review of heavy metals in drinking water and their effect on human health. IJIRSET 2:2992–2996Google Scholar
  55. Monkowius U, Ritter S, König B, Zabel M, Yersin H (2007) Synthesis, characterisation and ligand properties of novel bi-1,2,3-triazole ligands. Eur J Inorg Chem:4597–4606Google Scholar
  56. Naccari C, Cicero N, Ferrantelli V, Giangrosso G, Vella A, Macaluso A, Naccari F, Dugo G (2015) Toxic metals in pelagic, benthic and demersal fish species from Mediterranean FAO Zone 37. Bull Environ Contam Toxicol 95:567–573CrossRefGoogle Scholar
  57. Namasivayam C, Kadirvelu K (1999) Uptake of mercury(II) from wastewater by activated carbon from unwanted agricultural solid by-product: coirpith. Carbon 37:79–84CrossRefGoogle Scholar
  58. Naseem R, Tahir SS (2001) Removal of Pb (II) from aqueous solution by using bentonite as an adsorbent. Water Res 35:3982–3986CrossRefGoogle Scholar
  59. Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6:31641(11pp)Google Scholar
  60. Romeo R, Giofré SV, Carnovale C, Campisi A, Parenti R, Bandini L, Chiacchio MA (2013) Synthesis and biological evaluation of 3-hydroxymethyl-5-(1H-1,2,3-triazol) isoxazolidines. Bioorg Med Chem 21:7929–7937CrossRefGoogle Scholar
  61. Romeo R, Giofré SV, Carnovale C, Chiacchio MA, Campisi A, Mancuso R, Cirmi S, Navarra M (2014) Synthesis and biological activity of triazole-appended N,O-nucleosides. Eur J Org Chem 25:5442–5447CrossRefGoogle Scholar
  62. Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci 362:337–344CrossRefGoogle Scholar
  63. Saleh TA, Gupta VK (2012a) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ Sci Pollut Res 19:1224–1228CrossRefGoogle Scholar
  64. Saleh TA, Gupta VK (2012b) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106CrossRefGoogle Scholar
  65. Saleh TA, Gupta VK (2012c) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89:245–251CrossRefGoogle Scholar
  66. Saleh TA, Gupta VK (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv Colloid Interf Sci 211:93–101CrossRefGoogle Scholar
  67. Salvo A, Cicero N, Vadalà R, Mottese AF, Bua GD, Mallamace D, Giannetto C, Dugo G (2016) Toxic and essential metals determination in commercial seafood: Paracentrotus lividus by ICP-MS. Nat Prod Res 30:657–664CrossRefGoogle Scholar
  68. Salvo A, Potortì AG, Cicero N, Bruno M, Lo Turco V, Di Bella G, Dugo G (2014) Statistical characterisation of heavy metal contents in Paracentrotus lividus from Mediterranean Sea. Nat Prod Res 28:718–726CrossRefGoogle Scholar
  69. Saravanan R, Gupta VK, Narayanan V, Stephen A (2013a) Comparative study on photocatalytic activity of ZnO prepared by different methods. J Mol Liquids 181:133–141CrossRefGoogle Scholar
  70. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2013b) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liquids 221:1029–1033CrossRefGoogle Scholar
  71. Saravanan R, Gupta VK, Prakash T, Narayanan V, Stephen A (2013c) Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liquids 178:88–93CrossRefGoogle Scholar
  72. Saravanan R, Joicy S, Gupta VK, Narayanan V, Stephen A (2013d) Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater Sci Eng C 33:4725–4731CrossRefGoogle Scholar
  73. Saravanan R, Karthikeyan N, Gupta VK, Thirumal E, Thangadurai P, Narayanan V, Stephen A (2013e) ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater Sci Eng C 33:2235–2244CrossRefGoogle Scholar
  74. Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013f) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33:91–98CrossRefGoogle Scholar
  75. Saravanan R, Thirumal E, Gupta VK, Narayanan V, Stephen A (2013g) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liquids 177:394–401CrossRefGoogle Scholar
  76. Saravanan R, Gupta VK, Mosquera E, Gracia F (2014a) Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J Mol Liquids 198:409–412CrossRefGoogle Scholar
  77. Saravanan R, Gupta VK, Narayanan V, Stephen A (2014b) Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3. J Taiwan Inst Chem Eng 45:1910–1917CrossRefGoogle Scholar
  78. Saravanan R, Prakashc T, Gupta VK, Stephen A (2014c) Tailoring the electrical and dielectric properties of ZnO nanorods by substitution. J Mol Liquids 193:160–165CrossRefGoogle Scholar
  79. Saravanan R, Gracia F, Khan MM, Poornima V, Gupta VK, Narayanan V, Stephenh A (2015a) ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. J Mol Liquids 209:374–380CrossRefGoogle Scholar
  80. Saravanan R, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015d) Visible light induced degradation of methyl orange using β-Ag0.333V2O5nanorod catalysts by facile thermal decomposition method. J Saudi Chem Soc 19:521–527CrossRefGoogle Scholar
  81. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015b) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133CrossRefGoogle Scholar
  82. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015c) ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5:34645–34651CrossRefGoogle Scholar
  83. Singh S, Barick KC, Bahadur D (2013) Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater Nanotechnol 3:20 (19 pp).Google Scholar
  84. Somasundaran P (2004) Encyclopedia of surface and Colloid science, 2004 update supplement 5. York, NewGoogle Scholar
  85. Toma L, Legnani L, Rencurosi A, Poletti L, Lay L, Russo G (2009) Modeling of synthetic phosphono and carbaanalogues of N-acetyl-α-D-mannosamine 1-phosphate, the repeating unit of the capsularpolysaccharide from Neisseria meningitidis serovar A. Org Biomol Chem 7:3734–3740CrossRefGoogle Scholar
  86. Tripathi A, Ranjan MR (2015) Heavy metal removal from wastewater using low cost adsorbents. J Bioremed Biodeg 6:1000315 (5 pp).Google Scholar
  87. Uzun L, Kara A, Osman B, Yilmaz E, Besirli N, Denizli A (2009) Removal of heavy metal ions by magnetic beads containing triazole chelating groups. J Appl Polym Sci 114:2246–2253CrossRefGoogle Scholar
  88. Wang T, Wu Y, Kuan SL, Dumele O, Lamla M, Ng DYW, Arzt M, Thomas J, Mueller JO, Barner-Kowollik C, Weil TA (2015) A disulfide intercalator toolbox for the site-directed modification of polypeptides. Chem Eur J 21:228–238CrossRefGoogle Scholar
  89. Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, Pyun J, Fréchet JMJ, Sharpless KB, Fokin VV (2004) Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed 43:3928–3932CrossRefGoogle Scholar
  90. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 402647 (20 pp).Google Scholar
  91. Xie Y, Huang Q, Liu M, Wang K, Wan Q, Deng F, Lu L, Zhang X, Wei Y (2015) Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Adv 5:68430–82015CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Daniela Iannazzo
    • 1
    Email author
  • Alessandro Pistone
    • 1
  • Ida Ziccarelli
    • 1
  • Claudia Espro
    • 1
  • Signorino Galvagno
    • 1
  • Salvatore V Giofré
    • 2
  • Roberto Romeo
    • 2
  • Nicola Cicero
    • 3
  • Giuseppe D Bua
    • 3
  • Giuseppe Lanza
    • 4
  • Laura Legnani
    • 4
    • 5
  • Maria A Chiacchio
    • 4
    • 5
    Email author
  1. 1.Dipartimento di IngegneriaUniversity of MessinaMessinaItaly
  2. 2.Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientaliUniversity of MessinaMessinaItaly
  3. 3.Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionaliUniversity of MessinaMessinaItaly
  4. 4.Dipartimento di Scienze del FarmacoUniversity of CataniaCataniaItaly
  5. 5.Dipartimento di ChimicaUniversity of PaviaPaviaItaly

Personalised recommendations