Environmental Science and Pollution Research

, Volume 24, Issue 16, pp 14455–14462 | Cite as

Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles

  • Maria L. Bizo
  • Sandor Nietzsche
  • Ulrich Mansfeld
  • Falko Langenhorst
  • Juraj Majzlan
  • Jörg Göttlicher
  • Alexandru Ozunu
  • Steffi Formann
  • Katrin Krause
  • Erika Kothe
Research Article

Abstract

The development of mycorrhized pine seedlings grown in the presence of lead was assessed in order to investigate how higher plants can tolerate lead pollution in the environment. Examination with scanning electron microscopy (SEM) revealed that Pb uptake was prominent in the roots, while a smaller amount was found in pine needles, which requires symplastic uptake and root-to-shoot transfer. Lead was concentrated in nanocrystalline aggregates attached to the cell wall and, according to elemental microanalyses, is associated with phosphorus and chlorine. The identification of the nanocrystalline phase in roots and needles was performed by transmission electron microscopy (TEM) and synchrotron X-ray micro-diffraction (μ-XRD), revealing the presence of pyromorphite, Pb5[PO4]3(Cl, OH), in both roots and needles. The extracellular embedding of pyromorphite within plant cell walls, featuring an indented appearance of the cell wall due to a callus-like outcrop of minerals, suggests a biogenic origin. This biomineralization is interpreted as a defense mechanism of the plant against lead pollution.

Keywords

Biomineralization Pyromorphite Diffraction Electron microscopy Lead pollution Mycorrhiza 

References

  1. Antosiewicz D, Wierzbicka M (1999) Localization of lead in Allium cepa L. cells by electron microscopy. J Microsc 195:139–146CrossRefGoogle Scholar
  2. Bizo ML, Formann S, Krause K, Roşu C, Kothe E (2013) Resistance of young stresses caused by heavy metals such as Cs and Cd. Environ Eng Manag J 12:325–330Google Scholar
  3. Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67(6):1127–1155CrossRefGoogle Scholar
  4. Castro L, Blázquez ML, Muñoz JÁ, González González F, Ballester A (2014) Mechanism and application of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:1–18CrossRefGoogle Scholar
  5. Chilvers GA, Douglass PA, Lapeyrie FF (1986) A paper-sandwich technique for rapid synthesis of ectomycorrhizas. New Phytol 103:397–402CrossRefGoogle Scholar
  6. Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of Pb-P grains in the root of Agrostis capillaris L. by ATEM and EXAFS. Mineral Mag 63(6):777–789CrossRefGoogle Scholar
  7. Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37(11):2403–2412CrossRefGoogle Scholar
  8. Dai YS, Hughes JM (1989) Crystal-structure refinements of vanadinite and pyromorphite. Can Mineral 27:189–192Google Scholar
  9. Davison BH, Parks J, Davis MF, Donohoe BS (2013) Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. John Wiley & Sons, Ltd., Chichester, pp 23–38. doi:10.1002/9780470975831.ch3 CrossRefGoogle Scholar
  10. Ensikat HJ, Geisler T, Weigend M (2016) A first report of hydroxylated apatite as structural biomineral in Loasaceae—plants’ teeth against herbivores. Sci Rep 6:26073CrossRefGoogle Scholar
  11. Fuente V, Rufo L, Juárez BH, Menéndez N, García-Hernández M, Salas-Colera E, Espinosa A (2016) Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. J Struct Biol 193(1):23–32CrossRefGoogle Scholar
  12. Gao P, Wu Y, Wu L (2016) Co-assembly of polyoxometalates and peptides towards biological applications. Soft Matter 12(41):8464–8479CrossRefGoogle Scholar
  13. George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture 3rd Edition, Springer, pp:65–113Google Scholar
  14. Haferburg G, Kloess G, Schmitz W, Kothe E (2008) “Ni-struvite”—a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72(3):517–523CrossRefGoogle Scholar
  15. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11CrossRefGoogle Scholar
  16. Hammersley AP, Svensson SO, Thompson A (1994) Calibration and correction of spatial distortions in 2D detector systems. Nucl Instrum Meth A346:312–321CrossRefGoogle Scholar
  17. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:235–248CrossRefGoogle Scholar
  18. Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319CrossRefGoogle Scholar
  19. Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116CrossRefGoogle Scholar
  20. Kopittke PM, Asher CJ, Blamey FPC, Auchterlonie GJ, Guo YN, Menzies NW (2008) Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Environ Sci Technol 42(12):4595–4599CrossRefGoogle Scholar
  21. Kothe E, Schlunk I, Senftleben D, Krause K (2013) Ectomycorrhiza-specific gene expression. In: Kempken F (ed) The Mycota XI: agricultural applications. Springer, Berlin, pp 295–312CrossRefGoogle Scholar
  22. Kumari D, Qian XY, Pan X, Achal V, Li Q, Gadd GM (2016) Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv Appl Microbiol 94:79–108CrossRefGoogle Scholar
  23. Laperche V, Logan TJ, Gaddam P, Traina S (1997) Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ Sci Technol 31(10):2745–2753CrossRefGoogle Scholar
  24. Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748Google Scholar
  25. Liang X, Kierans M, Ceci A, Hillier S, Gadd GM (2016) Phosphatase-mediated bioprecipitation of lead by soil fungi. Environ Microbiol 18(1):219–231CrossRefGoogle Scholar
  26. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131CrossRefGoogle Scholar
  27. Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505CrossRefGoogle Scholar
  28. Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153(2):323–332CrossRefGoogle Scholar
  29. Miretzky P, Fernandez-Cirelli A (2008) Phosphates for Pb immobilization in soils: a review. Environ Chem Lett 6(3):121–133CrossRefGoogle Scholar
  30. Orlovich DA, Ashford AE (1993) Polyphosphate granules are an artefact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma 173(3):91–102CrossRefGoogle Scholar
  31. Phieler R, Merten D, Roth M, Büchel G, Kothe E (2015) Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Environ Sci Pollut Res 22(24):19408–19416CrossRefGoogle Scholar
  32. Prozorov T (2015) Magnetic microbes: bacterial magnetite biomineralization. Semin Cell Dev Biol 46:36–43CrossRefGoogle Scholar
  33. Reid N, Robson TC, Radcliffe B, Verrall M (2016) Excessive sulphur accumulation and ionic storage behaviour identified in species of acacia (Leguminosae: Mimosoideae). Ann Bot 117(4):653–666CrossRefGoogle Scholar
  34. Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J, Stefaniak EA, Magnin V, Ranieri V, Dumat C (2014) Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Sci Total Environ 476-477:667–676CrossRefGoogle Scholar
  35. Schütze E, Weist A, Klose M, Wach T, Schumann M, Nietzsche S, Merten D, Baumert J, Majzlan J, Kothe E (2013) Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil. Biogeosciences 10:3605–3614CrossRefGoogle Scholar
  36. Selvakumar M, Pawar HS, Francis NK, Das B, Dhara S, Chattopadhyay S (2016) Excavating the role of Aloe Vera wrapped mesoporous hydroxyapatite frame ornamentation in newly Architectured polyurethane scaffolds for Osteogenesis and guided bone regeneration with Microbial protection. ACS Appl Mater Interfaces 8(9):5941–5960CrossRefGoogle Scholar
  37. Smith S, Read D (2008) Mycorrhizal symbiosis. Academic Press, New YorkGoogle Scholar
  38. Traina SJ, Laperche V (1999) Contaminant bioavailability in soils, sediments, and aquatic environments. Proc Natl Acad Sci U S A 96:3365–3371CrossRefGoogle Scholar
  39. Wei W, Wang Y, Wang Z, Han R, Li S, Wei Z, Zhang Y (2016) Stability of chloropyromorphite in ryegrass rhizosphere as affected by root-secreted low molecular weight organic acids. PLoS One 11(8):e0160628CrossRefGoogle Scholar
  40. Zeth K, Hoiczyk E, Okuda M (2016) Ferroxidase-mediated iron oxide Biomineralization: novel pathways to multifunctional nanoparticles. Trends Biochem Sci 41(2):190–203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Maria L. Bizo
    • 1
    • 2
  • Sandor Nietzsche
    • 3
  • Ulrich Mansfeld
    • 4
  • Falko Langenhorst
    • 4
  • Juraj Majzlan
    • 4
  • Jörg Göttlicher
    • 5
  • Alexandru Ozunu
    • 2
  • Steffi Formann
    • 1
  • Katrin Krause
    • 1
  • Erika Kothe
    • 1
  1. 1.Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
  2. 2.Faculty of Environmental Science and EngineeringBabeș-Bolyai UniversityCluj-NapocaRomania
  3. 3.Center for Electron MicroscopyJena University HospitalJenaGermany
  4. 4.Institute of GeosciencesFriedrich Schiller University JenaJenaGermany
  5. 5.Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations