Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 1094–1102 | Cite as

Inorganic fouling control in reverse osmosis wastewater reclamation by purging carbon dioxide

  • Muhammad Kashif Shahid
  • Minsu Pyo
  • Young-Gyun ChoiEmail author
Water Industry: Water-Energy-Health Nexus


Inorganic fouling on the membrane surface is one of the major prevalent issues affecting the performance and cost of reverse osmosis system. Chemical dosage is a widely adopted method for the inhibition of inorganic scale on the membrane surface. In this study, CO2 was used to control inorganic scale formation on surface of reverse osmosis (RO) membrane in wastewater reclamation. The pH of influent could be lowered by purging CO2. It caused an increase in solubility of inorganic salts in water resulting in discharge of principle ions in concentrate stream. A pilot plant study was conducted with four different RO modules including control, with dosage of antiscalant, with purging CO2 and with co-addition of antiscalant and CO2. The effectiveness of CO2 purging was assessed on the basis of operational analysis, in-line analysis and morphological results. Ryznar stability index was used to determine the scaling potential of system. The examined data indicated that CO2 purging was successful to inhibit scale formation on the membrane surface. Moreover, CO2 was found more eco-friendly than antiscalant, as no by-products were generated in concentrate stream.


Inorganic scale Transmembrane pressure Reverse osmosis CO2 purging Antiscalant Wastewater reclamation 



This research was supported by 2015 Joint Lab supporting Program of Ministry of Trade, Industry and Energy (MOTIE), Korea (Project no. N0001672).


  1. Al-Amoudi A, Lovitt RW (2007) Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J Memb Sci 303:4–28. doi: 10.1016/j.memsci.2007.06.002 CrossRefGoogle Scholar
  2. Andritsos N, Karabelas AJ, Koutsoukos PG (1997) Morphology and structure of CaCO3 scale layers formed under isothermal flow conditions. Langmuir 7463:2873–2879CrossRefGoogle Scholar
  3. Antony A, Low JH, Gray S et al (2011) Scale formation and control in high pressure membrane water treatment systems: a review. J Memb Sci 383:1–16. doi: 10.1016/j.memsci.2011.08.054 CrossRefGoogle Scholar
  4. APHA/AWWA/WEF (2012) Standard Methods for the Examination of Water and Wastewater.Google Scholar
  5. Bartels CR, Wilf M, Andes K, Iong J (2005) Design considerations for wastewater treatment by reverse osmosis. Water Sci Technol 51:473–482CrossRefGoogle Scholar
  6. Filloux E, Wang J, Pidou M et al (2015) Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. J Memb Sci 495:276–283. doi: 10.1016/j.memsci.2015.08.034 CrossRefGoogle Scholar
  7. Fritzmann C, Löwenberg J, Wintgens T, Melin T (2007) State-of-the-art of reverse osmosis desalination. Desalination 216:1–76. doi: 10.1016/j.desal.2006.12.009 CrossRefGoogle Scholar
  8. Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207. doi: 10.1016/j.desal.2012.10.015 CrossRefGoogle Scholar
  9. Greenberg G, Hasson D, Semiat R (2005) Limits of RO recovery imposed by calcium phosphate precipitation. Desalination 183:273–288. doi: 10.1016/j.desal.2005.04.026 CrossRefGoogle Scholar
  10. Greenlee LF, Lawler DF, Freeman BD et al (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43:2317–2348. doi: 10.1016/j.watres.2009.03.010 CrossRefGoogle Scholar
  11. Greenlee LF, Testa F, Lawler DF et al (2010) The effect of antiscalant addition on calcium carbonate precipitation for a simplified synthetic brackish water reverse osmosis concentrate. Water Res 44:2957–2969. doi: 10.1016/j.watres.2010.02.024 CrossRefGoogle Scholar
  12. Harris J (2012) Handbook basics of reverse osmosis. Puretec, CaliforniaGoogle Scholar
  13. Hart PW, Colson GW, Burris J (2011) Application of carbon dioxide to reduce water-side lime scale in heat exchangers. J Sci Technol For Prod Process 1:67–70Google Scholar
  14. Hoek EMV, Kim AS, Elimelech M (2002) Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations. Environ Eng Sci 19:357–372. doi: 10.1089/109287502320963364 CrossRefGoogle Scholar
  15. Holloway RW, Miller-Robbie L, Patel M et al (2016) Life-cycle assessment of two potable water reuse technologies: MF/RO/UV-AOP treatment and hybrid osmotic membrane bioreactors. J Memb Sci 507:165–178. doi: 10.1016/j.memsci.2016.01.045 CrossRefGoogle Scholar
  16. Joss A, Baenninger C, Foa P et al (2011) Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2 addition as scaling control. Water Res 45:6141–6151. doi: 10.1016/j.watres.2011.09.011 CrossRefGoogle Scholar
  17. Kitamura M (2001) Crystallization and transformation mechanism of calcium carbonate polymorphs and the effect of magnesium ion. J Colloid Interface Sci 236:318–327. doi: 10.1006/jcis.2000.7398 CrossRefGoogle Scholar
  18. Kucera J (2014) Desalination: water from water.Google Scholar
  19. Lee S, Cho J, Elimelech M (2004) Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes. Desalination 160:1–12. doi: 10.1016/S0011-9164(04)90013-6 CrossRefGoogle Scholar
  20. Lee S, Kim J, Lee CH (1999) Analysis of CaSO4 scale formation mechanism in various nanofiltration modules. J Memb Sci 163:63–74. doi: 10.1016/S0376-7388(99)00156-8 CrossRefGoogle Scholar
  21. Ma W, Zhao Y, Wang L (2007) The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis. Desalination 203:256–259. doi: 10.1016/j.desal.2006.02.020 CrossRefGoogle Scholar
  22. Miller DJ, Kasemset S, Paul DR, Freeman BD (2014) Comparison of membrane fouling at constant flux and constant transmembrane pressure conditions. J Memb Sci 454:505–515. doi: 10.1016/j.memsci.2013.12.027 CrossRefGoogle Scholar
  23. Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294. doi: 10.1021/ac60068a007 CrossRefGoogle Scholar
  24. Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 41:17–24. doi: 10.1021/es072435t CrossRefGoogle Scholar
  25. Ngene IS, Lammertink RGH, Kemperman AJB et al (2010) CO2 nucleation in membrane spacer channels remove biofilms and fouling deposits. Ind Eng Chem Res 49:10034–10039. doi: 10.1021/ie1011245 CrossRefGoogle Scholar
  26. Okazaki M, KIMURA S (1984) Scale formation on reverse-osmosis membranes. J Chem Eng JAPAN 17:145–151. doi: 10.1252/jcej.17.145 CrossRefGoogle Scholar
  27. Partlan E (2013) Dissolved carbon dioxide for scale removal in reverse osmosis. Clemson UniversityGoogle Scholar
  28. Pervov AG (1991) Scale formation prognosis and cleaning procedure schedules in reverse osmosis systems operation. Desalination 83:77–118. doi: 10.1016/0011-9164(91)85087-B CrossRefGoogle Scholar
  29. Pontié M, Rapenne S, Thekkedath A et al (2005) Tools for membrane autopsies and antifouling strategies in seawater feeds: a review. Desalination 181:75–90. doi: 10.1016/j.desal.2005.01.013 CrossRefGoogle Scholar
  30. Prihasto N, Liu QF, Kim SH (2009) Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination 249:308–316. doi: 10.1016/j.desal.2008.09.010 CrossRefGoogle Scholar
  31. Pype ML, Lawrence MG, Keller J, Gernjak W (2016) Reverse osmosis integrity monitoring in water reuse: the challenge to verify virus removal—a review. Water Res 98:384–395. doi: 10.1016/j.watres.2016.04.040 CrossRefGoogle Scholar
  32. Raffin M, Germain E, Judd S (2012) Assessment of fouling of an RO process dedicated to indirect potable reuse. Desalin Water Treat 40:302–308. doi: 10.1080/19443994.2012.671171 CrossRefGoogle Scholar
  33. Reig FB, Adelantado JVG, Moya Moreno MCM (2002) FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples Talanta 58:811–821. doi: 10.1016/S0039-9140(02)00372-7 Google Scholar
  34. Seidel A, Waypa JJ, Elimelech M (2001) Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane. Environ Eng Sci 18:105–113. doi: 10.1089/10928750151132311 CrossRefGoogle Scholar
  35. Shih WY, Rahardianto A, Lee RW, Cohen Y (2005) Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes. J Memb Sci 252:253–263. doi: 10.1016/j.memsci.2004.12.023 CrossRefGoogle Scholar
  36. Shirazi S, Lin CJ, Chen D (2010) Inorganic fouling of pressure-driven membrane processes—a critical review. Desalination 250:236–248. doi: 10.1016/j.desal.2009.02.056 CrossRefGoogle Scholar
  37. Tang F, Hu HY, Sun LJ et al (2016) Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation. Water Res 90:329–336. doi: 10.1016/j.watres.2015.12.028 CrossRefGoogle Scholar
  38. Tharamapalan J, Duranceau SJ (2014) Canary in a membrane plant: a sentinel against membrane scaling. J Am Water Works Assoc 106:67–75. doi: 10.5942/jawwa.2014.106.0004 CrossRefGoogle Scholar
  39. Tzotzi C, Pahiadaki T, Yiantsios SG et al (2007) A study of CaCO3 scale formation and inhibition in RO and NF membrane processes. J Memb Sci 296:171–184. doi: 10.1016/j.memsci.2007.03.031 CrossRefGoogle Scholar
  40. Yao CL, Qi CX, Zhu JM, Xu WH (2010) Unusual morphology of calcium carbonate controlled by amino acids in agarose gel. J Chil Chem Soc 55:270–273. doi: 10.4067/S0717-97072010000200028 CrossRefGoogle Scholar
  41. Zach-Maor A, Semiat R, Rahardianto A et al (2008) Diagnostic analysis of RO desalting treated wastewater. Desalination 230:239–247. doi: 10.1016/j.desal.2007.11.028 CrossRefGoogle Scholar
  42. Zeiher EHK, Ho B, Williams KD (2003) Novel antiscalant dosing control. Desalination 157:209–216. doi: 10.1016/S0011-9164(03)00400-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Muhammad Kashif Shahid
    • 1
  • Minsu Pyo
    • 1
  • Young-Gyun Choi
    • 1
    Email author
  1. 1.Department of Environmental EngineeringDaegu UniversityGyeongsanRepublic of Korea

Personalised recommendations