Environmental Science and Pollution Research

, Volume 24, Issue 15, pp 13497–13508 | Cite as

Plutonium interaction studies with the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99: changes in the plutonium speciation by solvent extractions

  • Henry Moll
  • Andrea Cherkouk
  • Frank Bok
  • Gert Bernhard
Research Article

Abstract

Since plutonium could be released from nuclear waste disposal sites, the exploration of the complex interaction processes between plutonium and bacteria is necessary for an improved understanding of the fate of plutonium in the vicinity of such a nuclear waste disposal site. In this basic study, the interaction of plutonium with cells of the bacterium, Sporomusa sp. MT-2.99, isolated from Mont Terri Opalinus Clay, was investigated anaerobically (in 0.1 M NaClO4) with or without adding Na-pyruvate as an electron donor. The cells displayed a strong pH-dependent affinity for Pu. In the absence of Na-pyruvate, a strong enrichment of stable Pu(V) in the supernatants was discovered, whereas Pu(IV) polymers dominated the Pu oxidation state distribution on the biomass at pH 6.1. A pH-dependent enrichment of the lower Pu oxidation states (e.g., Pu(III) at pH 6.1 which is considered to be more mobile than Pu(IV) formed at pH 4) was observed in the presence of up to 10 mM Na-pyruvate. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g., biosorption and bioreduction.

Keywords

Plutonium Bacteria Sporomusa sp. Biosorption Bioreduction Solvent extractions 

Supplementary material

11356_2017_8969_MOESM1_ESM.docx (562 kb)
ESM 1(DOCX 562 kb)

References

  1. Atkins PW (1998) Physical chemistry. Oxford University Press, OxfordGoogle Scholar
  2. Bachvarova V, Geissler A, Selenska-Pobell S (2009) Bacterial isolates cultured under anaerobic conditions from an opalinus clay sample from the Mont Terri Rock Laboratory. FZD-530 FZD-IRC Annual Report, 18.Google Scholar
  3. Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, Cambridge 543 pp.Google Scholar
  4. Boukhalfa H, Icopini GA, Reilly SD, Neu MP (2007) Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol 73:5897–5903CrossRefGoogle Scholar
  5. Brookshaw DR, Pattrick RAD, Lloyd JR, Vaughan DJ (2012) Microbial effects on mineral-radionuclide interactions and radionuclide solid-phase capture processes. Mineral Mag 76:777–806CrossRefGoogle Scholar
  6. Cho H-R, Jung EC, Park KK, Kim WH, Song K, Yun J-I (2010) Spectroscopic study on the mononuclear hydrolysis species of Pu(VI) under oxidation conditions. Radiochim Acta 98:765–770Google Scholar
  7. Francis AJ (2007) Microbial mobilization and immobilization of plutonium. J Alloys Compd 444-445:500–505CrossRefGoogle Scholar
  8. Francis AJ, Dodge CJ (2015) Microbial mobilization of plutonium and other actinides from contaminated soil. J Environ Radioact 150:277–285CrossRefGoogle Scholar
  9. Francis AJ, Dodge CJ, Gillow JB (2008) Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions. Environ Sci Technol 42:2355–2360CrossRefGoogle Scholar
  10. Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Chemical thermodynamics series volume 5: update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Elsevier, Amsterdam 960 pp.Google Scholar
  11. Icopini GA, Lack JG, Hersman LE, Neu MP, Boukhalfa H (2009) Plutonium(V/VI) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol 75:3641–3647CrossRefGoogle Scholar
  12. Joseph C, Van Loon LR, Jakob A, Steudtner R, Schmeide K, Sachs S, Bernhard (2013) Diffusion of U(VI) in Opalinus Clay: influence of temperature and humic acid. Geochim Cosmochim Acta 75:352–367Google Scholar
  13. Keller C (1971) The chemistry of the transuranium elements, volume 3. Verlag Chemie GmbH, WeinheimGoogle Scholar
  14. Kersting AB (2013) Plutonium transport in the environment. Inorg Chem 52:3533–3546CrossRefGoogle Scholar
  15. Kimber RL, Boothman C, Purdie P, Livens FR, Lloyd JR (2012) Biogeochemical behavior of plutonium during anoxic biostimulation of contaminated sediments. Mineral Mag 76:567–578CrossRefGoogle Scholar
  16. Klimmek S (2003) Charakterisierung der Biosorption von Schwermetallen an Algen. PhD thesis, Technische Universität Berlin, Berlin, Germany.Google Scholar
  17. Kümmel R, Worch E (1990) Adsorption aus wässrigen Lösungen. Dt. Verl. für Grundstoffindustrie, LeipzigGoogle Scholar
  18. Lemire RJ, Fuger J, Nithsche H, Potter P, Rand MH, Rydberg J, Spahiu K, Sullivan JC, Ullman W, Vitorge P, Wanner H (2001) Chemical thermodynamics series volume 4: chemical thermodynamics of neptunium and plutonium. Elsevier, Amsterdam 870 pp.Google Scholar
  19. Lloyd JR, Gadd GM (2011) The geomicrobiology of radionuclides. Geomicrobiol J 28:383–386CrossRefGoogle Scholar
  20. Lukšienė B, Druteikienė R, Pečiulytė D, Baltrūnas D, Remeikis V, Paškevičius A (2012) Effect of microorganisms on the plutonium oxidation states. Appl Radiat Isot 70:442–449CrossRefGoogle Scholar
  21. Lütke L, Moll H, Bachvarova V, Selenska-Pobell S, Bernhard G (2013) The U(VI) speciation influenced by a novel Paenibacillus isolate from Mont Terri Opalinus clay. Dalton Trans 42:6979–6988CrossRefGoogle Scholar
  22. Moll H, Merroun ML, Hennig C, Rossberg A, Selenska-Pobell S, Bernhard G (2006) The interaction of Desulfovibrio äspöensis DSM 10631T with plutonium. Radiochim Acta 94:815–824CrossRefGoogle Scholar
  23. Moll H, Lütke L, Bachvarova V, Cherkouk A, Selenska-Pobell S, Bernhard G (2014) Interactions of the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99 with curium(III) and europium(III). Geomicrobiol J 31:682–696CrossRefGoogle Scholar
  24. Neu MP, Icopini GA, Boukhalfa H (2005) Plutonium speciation affected by environmental bacteria. Radiochim Acta 93:705–714CrossRefGoogle Scholar
  25. Neu MP, Boukhalfa H, Merroun ML (2010) Biomineralization and biotransformations of actinide materials. MRS Bull 35:849–857CrossRefGoogle Scholar
  26. Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184CrossRefGoogle Scholar
  27. Nitsche H, Lee SC, Gatti RC (1988) Determination of plutonium oxidation states at trace levels pertinent to nuclear waste disposal. J Radioanal Nucl Chem 124:171–185CrossRefGoogle Scholar
  28. Nitsche H, Roberts K, Xi R, Prussin T, Becraft K, Mahamid IA, Silber HB, Carpenter SA, Gatti RC (1994) Long term plutonium solubility and speciation studies in a synthetic brine. Radiochim Acta 66(67):3–8Google Scholar
  29. Ockenden DW, Welch GA (1956) The preparation and properties of some plutonium compounds. Part V.* Colloidal quadrivalent plutonium. J Chem Soc:3358–3363Google Scholar
  30. Ohnuki T, Yoshida T, Ozaki T, Kozai N, Sakamoto F, Nankawa T, Suzuki Y, Francis AJ (2009) Modeling of the interaction of Pu(VI) with the mixture of microorganism and clay. J Nucl Sci Technol 46:55–59CrossRefGoogle Scholar
  31. Ohnuki T, Kozai N, Sakamoto F, Ozaki T, Nankawa T, Suzuki Y, Francis AJ (2010) Association of actinides with microorganisms and clay: implications for radionuclide migration from waste-repository sites. Geomicrobiol J 27:225–230CrossRefGoogle Scholar
  32. Panak PJ, Nitsche H (2001) Interaction of aerobic soil bacteria with plutonium(VI). Radiochim Acta 89:499–504CrossRefGoogle Scholar
  33. Poulain S, Sergeant C, Simonoff M, Le Marrec C, Altmann S (2008) Microbial investigations in opalinus clay, an argillaceous formation under evaluation as a potential host rock for a radioactive waste repository. Geomicrobiol J 25:240–249CrossRefGoogle Scholar
  34. Reed DT, Pepper SE, Richmann MK, Smith G, Deo R, Rittmann BE (2007) Subsurface bio-mediated reduction of higher-valent uranium and plutonium. J Alloys Compd 444-445:376–382CrossRefGoogle Scholar
  35. Reilly SD, Neu MP (2006) Pu(VI) hydrolysis: further evidence for a dimeric plutonyl hydroxide and contrasts with U(VI) chemistry. Inorg Chem 45:1839–1846CrossRefGoogle Scholar
  36. Renshaw JC, Law N, Geissler A, Livens FR, Lloyd JR (2009) Impact of the Fe(III)-reducing bacteria Geobacter sulfurreducens and Shewanella oneidensis on the speciation of plutonium. Biogeochemistry 94:191–196CrossRefGoogle Scholar
  37. Roh C, Kang C, Lloyd JR (2015) Microbial bioremediation processes for radioactive waste. Korean J Chem Eng 32:1720–1726 and references thereinCrossRefGoogle Scholar
  38. Swanson JS, Reed DT, Ams DA, Norden D, Simmons KA (2012) Status report on the microbial characterization of halite and groundwater samples from the WIPP. Los Alamos National Laboratory, p 1Google Scholar
  39. Thury M, Bossart P (1999) The Mont Terri Rock Laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Eng Geol 52:347–359CrossRefGoogle Scholar
  40. Wilson RE, Hu Y-J, Nitsche H (2005) Detection and quantification of Pu(III, IV, V, and VI) using a 1.0-meter liquid core wave guide. Radiochim Acta 93:203–206CrossRefGoogle Scholar
  41. Wouters K, Moors H, Boven P, Leys N (2013) Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water. FEMS Microb Ecol 86:458–473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Henry Moll
    • 1
  • Andrea Cherkouk
    • 1
  • Frank Bok
    • 1
  • Gert Bernhard
    • 1
  1. 1.Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institute of Resource EcologyDresdenGermany

Personalised recommendations