Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Combustion of pistachio shell: physicochemical characterization and evaluation of kinetic parameters


The study of different renewable energy sources has been intensifying due to the current climate changes; therefore, the present work had the objective to characterize physicochemically the pistachio shell waste and evaluate kinetic parameters of its combustion. The pistachio shell was characterized through proximate analysis, ultimate analysis, SEM, and FTIR. The thermal and kinetic behaviors were evaluated by a thermogravimetric analyzer under oxidant atmosphere between room temperature and 1000 °C, in which the process was performed in three different heating rates (20, 30, and 40 °C min−1). The combustion of the pistachio shell presented two regions in the derivative thermogravimetric curves, where the first represents the devolatilization of volatile matter compounds and the second one is associated to the biochar oxidation. These zones were considered for the evaluation of the kinetic parameters E a , A, and f(α) by the modified method of Coats-Redfern, compensation effect, and master plot, respectively. The kinetic parameters for zone 1 were E a1 = 84.11 kJ mol−1, A 1 = 6.39 × 106 min−1, and f(α)1 = 3(1 − α)2/3, while for zone 2, the kinetic parameters were E a2 = 37.47 kJ mol−1, A 2 = 57.14 min−1, and f(α)2 = 2(1 − α)1/2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Açıkalın K, Karaca F, Bolat E (2012) Pyrolysis of pistachio shell: effects of pyrolysis conditions and analysis of products. Fuel 95:169–177. doi:10.1016/j.fuel.2011.09.037

  2. Anca-Couce A, Obernberger I (2016) Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. Fuel 167:158–167. doi:10.1016/j.fuel.2015.11.062

  3. Asadieraghi M, Wan Daud WMA (2014) Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers Manag 82:71–82. doi:10.1016/j.enconman.2014.03.007

  4. ASTM (2003) Standard test method for compositional analysis by thermogravimetry. ASTM International, West Conshohocken, pp 1–5

  5. Braga RM, Costa TR, Freitas JCO et al (2014) Pyrolysis kinetics of elephant grass pretreated biomasses. J Therm Anal Calorim 117:1341–1348. doi:10.1007/s10973-014-3884-2

  6. Braga RM, Queiroga TS, Calixto GQ et al (2015) The energetic characterization of pineapple crown leaves. Environ Sci Pollut Res 22:18987–18993. doi:10.1007/s11356-015-5082-6

  7. Branca C, Di Blasi C (2013) A unified mechanism of the combustion reactions of lignocellulosic fuels. Thermochim Acta 565:58–64. doi:10.1016/j.tca.2013.04.014

  8. Brebu M, Tamminen T, Spiridon I (2013) Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J Anal Appl Pyrolysis 104:531–539. doi:10.1016/j.jaap.2013.05.016

  9. Brown ME, Maciejewski M, Vyazovkin S et al (2000) Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta 355:125–143

  10. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. doi:10.1016/S0016-2361(01)00131-4

  11. Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608. doi:10.1016/j.rser.2014.06.013

  12. FAO (2015) FAO statistical pocketbook: world food and agriculture 2015. FAO, Rome

  13. Ferreira-Leitão V, Gottschalk LMF, Ferrara MA et al (2010) Biomass residues in Brazil: availability and potential uses. Waste and Biomass Valorization 1:65–76. doi:10.1007/s12649-010-9008-8

  14. García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258. doi:10.1016/j.biortech.2011.10.004

  15. Gotor FJ, Criado JM, Malek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A 104:10777–10782. doi:10.1021/jp0022205

  16. Huber MT (2009) Energizing historical materialism: fossil fuels, space and the capitalist mode of production. Geoforum 40:105–115. doi:10.1016/j.geoforum.2008.08.004

  17. Jenkins BM, Baxter LL, Miles TR, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. doi:10.1016/S0378-3820(97)00059-3

  18. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140. doi:10.1016/j.rser.2015.12.185

  19. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328. doi:10.1021/jp062746a

  20. Kocabaş-Ataklı ZÖ, Okyay-Öner F, Yürüm Y (2015) Combustion characteristics of Turkish hazelnut shell biomass, lignite coal, and their respective blends via thermogravimetric analysis. J Therm Anal Calorim 119:1723–1729. doi:10.1007/s10973-014-4348-4

  21. Komnitsas K, Zaharaki D, Pyliotis I et al (2015) Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals. Waste and Biomass Valorization 6:805–816. doi:10.1007/s12649-015-9364-5

  22. Labaki M, Jeguirim M (2016) Thermochemical conversion of waste tyres—a review. Environ Sci Pollut Res. doi:10.1007/s11356-016-7780-0

  23. Liu Z, Quek A, Balasubramanian R (2014) Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars. Appl Energy 113:1315–1322. doi:10.1016/j.apenergy.2013.08.087

  24. López-González D, Avalos-Ramirez A, Giroir-Fendler A et al (2015) Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry. Energy 90:1626–1635. doi:10.1016/

  25. Lua AC, Yang T (2004) Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. J Colloid Interface Sci 276:364–372. doi:10.1016/j.jcis.2004.03.071

  26. Lua AC, Yang T (2009) Theoretical and experimental SO2 adsorption onto pistachio-nut-shell activated carbon for a fixed-bed column. Chem Eng J 155:175–183. doi:10.1016/j.cej.2009.07.031

  27. Magdziarz A, Wilk M (2013) Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim 114:519–529. doi:10.1007/s10973-012-2933-y

  28. Nanda S, Mohammad J, Reddy SN et al (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Biorefinery 4:157–191. doi:10.1007/s13399-013-0097-z

  29. Senum GI, Yang RT (1977) Rational approximations of the integral of the Arrhenius function. J Therm Anal 11:445–447

  30. Sullivan AL, Ball R (2012) Thermal decomposition and combustion chemistry of cellulosic biomass. Atmos Environ 47:133–141. doi:10.1016/j.atmosenv.2011.11.022

  31. Taghizadeh-Alisaraei A, Assar HA, Ghobadian B, Motevali A (2017) Potential of biofuel production from pistachio waste in Iran. Renew Sust Energ Rev 72:510–522. doi:10.1016/j.rser.2017.01.111

  32. Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crop Prod 95:704–717. doi:10.1016/j.indcrop.2016.11.039

  33. Vyazovkin S (2015) Isoconversional kinetics of thermally stimulated processes, 1st edn. Springer International Publishing, Cham

  34. Vyazovkin S, Burnham AK, Criado JM et al (2011) Thermochimica Acta ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi:10.1016/j.tca.2011.03.034

  35. Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrolysis 110:130–137. doi:10.1016/j.jaap.2014.08.013

  36. Xu F, Yu J, Tesso T et al (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809. doi:10.1016/j.apenergy.2012.12.019

  37. Yang T, Lua AC (2003) Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J Colloid Interface Sci 267:408–417. doi:10.1016/S0021-9797(03)00689-1

  38. Yao F, Wu Q, Lei Y et al (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. doi:10.1016/j.polymdegradstab.2007.10.012

Download references


The authors gratefully acknowledge financial support from the National Council for Scientific and Technological Development (CNPq) and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Correspondence to Jean Constantino Gomes da Silva.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.C.G., Alves, J.L.F., Galdino, W.V.d. et al. Combustion of pistachio shell: physicochemical characterization and evaluation of kinetic parameters. Environ Sci Pollut Res 25, 21420–21429 (2018).

Download citation


  • Combustion
  • Isoconversional method
  • Kinetic parameters
  • Pistachio shell