Environmental Science and Pollution Research

, Volume 24, Issue 15, pp 13687–13699 | Cite as

Optimal air quality policies and health: a multi-objective nonlinear approach

  • Helder Relvas
  • Ana Isabel Miranda
  • Claudio Carnevale
  • Giuseppe Maffeis
  • Enrico Turrini
  • Marialuisa Volta
Research Article
  • 198 Downloads

Abstract

The use of modelling tools to support decision-makers to plan air quality policies is now quite widespread in Europe. In this paper, the Regional Integrated Assessment Tool (RIAT+), which was designed to support policy-maker decision on optimal emission reduction measures to improve air quality at minimum costs, is applied to the Porto Urban Area (Portugal). In addition to technological measures, some local measures were included in the optimization process. Case study results are presented for a multi-objective approach focused on both NO2 and PM10 control measures, assuming equivalent importance in the optimization process. The optimal set of air quality measures is capable to reduce simultaneously the annual average concentrations values of PM10 and NO2 in 1.7 and 1.0 μg/m3, respectively. This paper illustrates how the tool could be used to prioritize policy objectives and help making informed decisions about reducing air pollution and improving public health.

Keywords

Urban air quality planning Integrated assessment modelling Emission reduction scenarios Surrogate model Cost-benefit Multi-objective approach 

Supplementary material

11356_2017_8895_MOESM1_ESM.jpg (68 kb)
Fig. S1Total primary gridded emissions at 2 × 2 km2 resolution for the CLE2020 (a) and the MFR2020 (b) inside the Porto Urban Area for PM2.5 and SO2. Units: Tonn yr.-1 (JPEG 68.3 kb)
11356_2017_8895_MOESM2_ESM.jpg (73 kb)
Fig. S2Total primary gridded emissions at 2 × 2 km2 resolution for the CLE2020 (a) and the MFR2020 (b) inside the Porto Urban Area for NH3 and VOC. Units: Tonn yr.-1 (JPEG 73.3 kb)
11356_2017_8895_MOESM3_ESM.jpg (86 kb)
Fig. S3ANN input and output values considering each quadrant (JPEG 86.2 kb)
11356_2017_8895_MOESM4_ESM.jpg (30 kb)
Fig. S4Number of available taxis in Porto Urban Area by municipality (JPEG 30.4 kb)
11356_2017_8895_MOESM5_ESM.jpg (62 kb)
Fig. S5ANN best parameters, for PM10 and NO2 annual mean index (JPEG 61.8 kb)

References

  1. Aben, J., Hettelingh, J.-P. & Schöpp, W (2005) RAINS-NL: an integrated assessment model to support Dutch air quality policy making. Informatics for environmental protection - networking environmental informationGoogle Scholar
  2. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Hetelingh J-P, Heyes C, Holland M, Kiesewetter G, Klimont Z, Rafaj P (2013) Policy scenarios for the revision of the thematic strategy on air pollution TSAP report #10. Version 1.2. International Institute for Applied Systems Analysis IIASA, ViennaGoogle Scholar
  3. APA, P. E. A (2010) Portuguese Informative Inventory Report 1990–2009. Submitted under the UNECE convention on longrange transboundary air pollution Agência Portuguesa do Ambiente, Amadora, Portugal (2010)Google Scholar
  4. APPRAISAL, P. O. A. P. P. F. A. O. I. S. A. R. A. L. S (2015) Guidance on integrated air quality and health assessment systems, deliverable 4.3 guidance document evaluation Tier2Google Scholar
  5. Bickel P, Friedrich R (2005) ExternE: externalities of energy, methodology 2005 update . IER, University of Stuttgart, StuttgartTech. Rep. Google Scholar
  6. Borrego C, Monteiro A, Carvalho A, Miranda A, Coelho D, Sá E, Lopes M, Sousa S (2011) Air quality plans for the northern region of Portugal: improving particulate matter and coping with legislation. INTECH Open Access Publisher, CroatiaGoogle Scholar
  7. Borrego C, Sá E, Carvalho A, Sousa S, Miranda A (2012) Plans and programmes to improve air quality over Portugal: a numerical modelling approach. Int J Environ Pollut 48:60–68CrossRefGoogle Scholar
  8. Brandt J, Silver JD, Christensen JH, Andersen MS, Bønløkke JH, Sigsgaard T, Geels C, Gross A, Hansen AB, Hansen KM (2013) Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system—an integrated modelling approach. Atmos Chem Phys 13:7725–7746CrossRefGoogle Scholar
  9. Carnevale C, Finzi G, Guariso G, Pisoni E, Volta M (2012a) Surrogate models to compute optimal air quality planning policies at a regional scale. Environ Model Softw 34:44–50CrossRefGoogle Scholar
  10. Carnevale C, Finzi G, Pisoni E, Volta M, Guariso G, Gianfreda R, Maffeis G, Thunis P, White L, Triacchini G (2012b) An integrated assessment tool to define effective air quality policies at regional scale. Environ Model Softw 38:306–315CrossRefGoogle Scholar
  11. Carnevale C, Finzi G, Pederzoli A, Turrini E, Volta M, Guariso G, Gianfreda R, MAFFEIS G, Pisoni E, Thunis P, Markl-Hummel L, Blond N, Clappier A, Dujardin V, Weber C, Perron G (2014) Exploring trade-offs between air pollutants through an integrated assessment model. Sci Total Environ 481:7–16CrossRefGoogle Scholar
  12. CCDR-LVT, L. R. C. A. D. C (2006) Plans and programmes to improve air quality in the Region of Lisbon and Tagus Valley. LisbonGoogle Scholar
  13. CCDR–N, N. R. C. A. D. C., UA (UNIVERSITY OF AVEIRO) (2007) Plan to improve air quality in the Northern Region: PM10–2004, O3–2004/2005, Technical Report No. AMB–QA–07/2007. PortoGoogle Scholar
  14. CCDR–N, N. R. C. A. D. C., UA (UNIVERSITY OF AVEIRO) (2010) Plan to improve air quality in the Braga Agglomeration 2005–2008, Technical Report No. AMB–QA–03/2010. PortoGoogle Scholar
  15. Clappier A, Pisoni E, Thunis P (2015) A new approach to design source–receptor relationships for air quality modelling. Environ Model Softw 74:66–74CrossRefGoogle Scholar
  16. D’elia I, Bencardino M, Ciancarella L, Contaldi M, Vialetto G (2009) Technical and non-technical measures for air pollution emission reduction: the integrated assessment of the regional air quality management plans through the Italian national model. Atmos Environ 43:6182–6189CrossRefGoogle Scholar
  17. Duque L, Relvas H, Silveira C, Ferreira J, Monteiro A, Gama C, Rafael S, Freitas S, Borrego C, Miranda AI (2016) Evaluating strategies to reduce urban air pollution. Atmos Environ 127:196–204CrossRefGoogle Scholar
  18. EEA (2014) Air quality in Europe—2014 report, EEA report no 5/2014. European Environment Agency, DenmarkGoogle Scholar
  19. EEA (2015) Air quality in Europe—2015 report, EEA report no 5/2015. European Environment Agency, DenmarkGoogle Scholar
  20. Gabusi V, Pisoni E, Volta M (2008) Factor separation in air quality simulations. Ecol Model 218:383–392CrossRefGoogle Scholar
  21. Hurley, P (2008) TAPM V4. Part 1: technical description. CSIRO Marine and Atmospheric Research Paper No. 25. CSIRO Marine and Atmospheric Research GroupGoogle Scholar
  22. Hurley PJ, Physick WL, Luhar AK (2005) TAPM: a practical approach to prognostic meteorological and air pollution modelling. Environ Model Softw 20:737–752CrossRefGoogle Scholar
  23. INE I (2012) Censos 2011 resultados definitivos-Portugal. Instituto Nacional de Estatística, IP, LisboaGoogle Scholar
  24. Karvosenoja N (2008) Emission scenario model for regional air pollution. Finnish Environment Institute, HelsinkiGoogle Scholar
  25. Mediavilla-Sahagún A, Apsimon HM (2006) Urban scale integrated assessment for London: which emission reduction strategies are more effective in attaining prescribed PM10 air quality standards by 2005? Environ Model Softw 21:501–513CrossRefGoogle Scholar
  26. Miranda A, Silveira C, Ferreira J, Monteiro A, Lopes D, Relvas H, Borrego C, Roebeling P (2015) Current air quality plans in Europe designed to support air quality management policies. Atmospheric Pollution Research 6:434–443CrossRefGoogle Scholar
  27. Miranda AI, Relvas H, Viaene P, Janssen S, Brasseur O, Carnevale C, Declerck P, Maffeis G, Turrini E, Volta M (2016) Applying integrated assessment methodologies to air quality plans: two European cases. Environ Sci Pol 65:29–38CrossRefGoogle Scholar
  28. Reis S, Nitter S, Friedrich R (2005) Innovative approaches in integrated assessment modelling of European air pollution control strategies–implications of dealing with multi-pollutant multi-effect problems. Environ Model Softw 20:1524–1531CrossRefGoogle Scholar
  29. Sjöberg, K., Haeger-Eugensson, M., Forsberg, B., Åström, S., Hellsten, S., Larsson, K., Björk, A. & Blomgren, H (2009) Quantification of population exposure to PM2. 5 and PM10 in Sweden 2005. IVL rapport B, 1792Google Scholar
  30. Thunis P, Degraeuwe B, Pisoni E, Ferrari F, Clappier A (2016a) On the design and assessment of regional air quality plans: the SHERPA approach. J Environ Manag 183(Part 3):952–958CrossRefGoogle Scholar
  31. Thunis P, Miranda A, Baldasano JM, Blond N, Douros J, Graff A, Janssen S, Juda-Rezler K, Karvosenoja N, Maffeis G, Martilli A, Rasoloharimahefa M, REAL E, Viaene P, Volta M, White L (2016b) Overview of current regional and local scale air quality modelling practices: assessment and planning tools in the EU. Environ Sci Pol 65:13–21CrossRefGoogle Scholar
  32. Vedrenne M, Borge R, Lumbreras J, Rodríguez ME (2014) Advancements in the design and validation of an air pollution integrated assessment model for Spain. Environ Model Softw 57:177–191CrossRefGoogle Scholar
  33. Vedrenne M, Borge R, Lumbreras J, Conlan B, Rodríguez ME, De Andrés JM, De La Paz D, Pérez J, Narros A (2015) An integrated assessment of two decades of air pollution policy making in Spain: impacts, costs and improvements. Sci Total Environ 527:351–361CrossRefGoogle Scholar
  34. Wagner, F., Amann, M. & Schoepp, W (2007) The GAINS optimization module as of 1 February 2007. IIASA Interim Report IR-07-004, http://www.iiasa.ac.at/Admin/PUB/Documents/IR-07-004.pdf
  35. WHO (2016) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization, GenevaGoogle Scholar
  36. Zachary DS, Drouet L, Leopold U, Reis LA (2011) Trade-offs between energy cost and health impact in a regional coupled energy–air quality model: the LEAQ model. Environ Res Lett 6:024021CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CESAM, Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly
  3. 3.TerrAria s.r.lMilanItaly

Personalised recommendations