Environmental Science and Pollution Research

, Volume 24, Issue 14, pp 13121–13135 | Cite as

Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity

  • Nathalie Colbach
  • Henri Darmency
  • Alice Fernier
  • Sylvie Granger
  • Valérie Le Corre
  • Antoine Messéan
Research Article


Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FlorSys; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.


GM crop Model Weed Glyphosate resistance Cropping system Biodiversity Yield gap Harmfulness Agroecology 

Supplementary material

11356_2017_8796_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1555 kb)


  1. Beckie HJ (2009) Herbicide resistance in weeds: influence of farm practices. Prairie Soils & Crops Journal 2:17–23Google Scholar
  2. Bigler F, Albajes R (2011) Indirect effects of genetically modified herbicide tolerant crops on biodiversity and ecosystem services: the biological control example. J Verbr Lebensm 6:79–84. doi: 10.1007/s00003-011-0688-1 CrossRefGoogle Scholar
  3. Boerboom CM (1999) Non chemical options for delaying weed resistance to herbicides in Midwest cropping systems. Weed Technol 13:636–642Google Scholar
  4. Bonny S (2016) Genetically modified herbicide-tolerant crops, weeds, and herbicides: overview and impact. Environmental Management 57:31–48. doi: 10.1007/s00267-015-0589-7 CrossRefGoogle Scholar
  5. Bretagnolle V, Gaba S (2015) Weeds for bees? A review. Agron Sustain Dev 35:891–909CrossRefGoogle Scholar
  6. Brookes G, Barfoot P (2009) GM crops: global socio-economic and environmental impacts 1996–2007Google Scholar
  7. Bürger J, Granger S, Guyot SHM, Messean A, N (2015) Simulation study of the impact of changed cropping practices in conventional and GM maize on weeds and associated biodiversity. Agric Syst 137:51–63. doi: 10.1016/j.agsy.2015.03.009
  8. Cavan G, Cussans J, Moss SR (2000) Modelling different cultivation and herbicide strategies for their effect on herbicide resistance in Alopecurus myosuroides. Weed Res 40:561–568CrossRefGoogle Scholar
  9. Chauvel B, Guillemin JP, Colbach N (2009) Evolution of a herbicide-resistant population of Alopecurus myosuroides Huds. In a long-term cropping system experiment. Crop Prot 28:343–349CrossRefGoogle Scholar
  10. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package. I. One-table method. R News 4(4):5–10Google Scholar
  11. Colbach N et al (2014a) The role of models for multicriteria evaluation and multiobjective design of cropping systems for managing weeds. Weed Res 54:541–555. doi: 10.1111/wre.12112 CrossRefGoogle Scholar
  12. Colbach N, Busset H, Roger-Estrade J, Caneill J (2014b) Predictive modelling of weed seed movement in response to superficial tillage tools. Soil Tillage Res 138:1–8CrossRefGoogle Scholar
  13. Colbach N, Collard A, Guyot SHM, Mezière D, Munier-Jolain NM (2014c) Assessing innovative sowing patterns for integrated weed management with a 3D crop:weed competition model. Eur J Agron 53:74–89. doi: 10.1016/j.eja.2013.09.019 CrossRefGoogle Scholar
  14. Colbach N et al (2016a) Uncertainty analysis and evaluation of a complex, multi-specific weed dynamics model with diverse and incomplete data sets. Environ Model Softw 86:184–203. doi: 10.1016/j.envsoft.2016.09.020 CrossRefGoogle Scholar
  15. Colbach N, Chauvel B, Darmency H, Delye C, Le Corre V (2016b) Choosing the best cropping systems to target pleiotropic effects when managing single-gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Manag Sci 72:1910–1925. doi: 10.1002/ps.4230 CrossRefGoogle Scholar
  16. Colbach N, Fernier A, Le Corre V, Messean A, Darmency H (2017) Simulating changes in cropping practices in conventional and glyphosate-resistant maize. I. Effect on weeds. Environmental Science and Pollution Research. doi: 10.1007/s11356-017-8591-7
  17. Collavo A, Sattin M (2014) First glyphosate-resistant Lolium spp. biotypes found in a European annual arable cropping system also affected by ACCase and ALS resistance Weed Res 54:325–334 doi: 10.1111/wre.12082
  18. Friesen LJS, Ferguson GM, Hall JC (2000) Management strategies for attenuating herbicide resistance: untoward consequences of their promotion. Crop Prot 19:891–895. doi: 10.1016/S0261-2194(00)00116-2 CrossRefGoogle Scholar
  19. Gardarin A, Dürr C, Colbach N (2012) Modeling the dynamics and emergence of a multispecies weed seed bank with species traits. Ecol Model 240:123–138. doi: 10.1016/j.ecolmodel.2012.05.004 CrossRefGoogle Scholar
  20. Goggin DE, Cawthray GR, Powles SB (2016) 2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport. J Exp Bot 67:3223–3235CrossRefGoogle Scholar
  21. Gressel J, Segel LA (1990) Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol 4:186–198Google Scholar
  22. Heap I (2016) The international survey of herbicide resistant weeds. Available www.weedscience.com. Internet.
  23. Heard MS et al (2003) Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. I. Effects on abundance and diversity. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 358:1819–1832CrossRefGoogle Scholar
  24. James C (2013) Global Status of Commercialized Biotech/GM Crops: 2013. http://www.isaaa.org/resources/publications/briefs/46/default.asp. Accessed 26/09/2014
  25. Lievin J, Waller F, Duroueix F, BONIN L, Quillot E, Rodriquez A (2013) R-sim: un outil web qui evalue le risque de developpement de resistances aux herbicides. Paper presented at the AFPP—22e Conference du COLUMA, Journees internationales sur la lutte contre les mauvaises herbes, Dijon France, 10–12 Decembre 2013Google Scholar
  26. Maxwell BD, Roush ML, Radosevich SR (1990) Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol 4:2–13Google Scholar
  27. Mezière D, Colbach N, Dessaint F, Granger S (2015a) Which cropping systems to reconcile weed-related biodiversity and crop production in arable crops? An approach with simulation-based indicators. Eur J Agron 68:22–37. doi: 10.1016/j.eja.2015.04.004 CrossRefGoogle Scholar
  28. Mezière D, Petit S, Granger S, Biju-Duval L, Colbach N (2015b) Developing a set of simulation-based indicators to assess harmfulness and contribution to biodiversity of weed communities in cropping systems. Ecol Indic 48:157–170. doi: 10.1016/j.ecolind.2014.07.028 CrossRefGoogle Scholar
  29. Moss SR, Clarke JH (1994) Guidelines for the prevention and control of herbicide-resistant black-grass (Alopecurus myosuroides Huds). Crop Prot 13:230–234CrossRefGoogle Scholar
  30. Moss SR, Perryman SAM, Tatnell LV (2007) Managing herbicide-resistant blackgrass (Alopecurus myosuroides): theory and practice. Weed Technol 21:300–309. doi: 10.1614/wt-06-087.1 CrossRefGoogle Scholar
  31. Munier-Jolain NM, Guyot SHM, Colbach N (2013) A 3D model for light interception in heterogeneous crop:weed canopies. Model structure and evaluation. Ecol Model 250:101–110. doi: 10.1016/j.ecolmodel.2012.10.023 CrossRefGoogle Scholar
  32. Munier-Jolain NM, Collard A, Busset H, SHM G, Colbach N (2014) Modelling the morphological plasticity of weeds in multi-specific canopies. Field Crop Res 155:90–98. doi: 10.1016/j.fcr.2013.09.018 CrossRefGoogle Scholar
  33. Neve P, Diggle AJ, Smith FP, Powles SB (2003) Simulating evolution of glyphosate resistance in Lolium rigidum I: population biology of a rare resistance trait. Weed Res 43:404–417CrossRefGoogle Scholar
  34. Powles SB (2008) Evolution in action: glyphosate-resistant weeds threaten world crops. Outlooks on Pest Management 19:256–259. doi: 10.1564/19dec07 CrossRefGoogle Scholar
  35. Renton M, Flower KC (2015) Occasional mouldboard ploughing slows evolution of resistance and reduces long-term weed populations in no-till systems. Agric Syst 139:66–75. doi: 10.1016/j.agsy.2015.06.005 CrossRefGoogle Scholar
  36. Renton M, Busi R, Neve P, Thornby D, Vila-Aiub M (2014) Herbicide resistance modelling: past, present and future. Pest Manag Sci 70:1394–1404. doi: 10.1002/ps.3773 CrossRefGoogle Scholar
  37. Sammons RD, Gaines TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70:1367–1377. doi: 10.1002/ps.3743 CrossRefGoogle Scholar
  38. Schwartz LM et al (2015) Seedbank and field emergence of weeds in glyphosate-resistant cropping Systems in the United States. Weed Sci 63:425–439. doi: 10.1614/ws-d-14-00089.1 CrossRefGoogle Scholar
  39. Shaner DL (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag Sci 56:320–326CrossRefGoogle Scholar
  40. Taylor R, Maxwell B, Boik R (2006) Indirect effects of herbicides on bird food resources and beneficial arthropods. Agric Ecosyst Environ 116:157–164CrossRefGoogle Scholar
  41. Vencill WK et al (2012) Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci 60:2–30. doi: 10.1614/ws-d-11-00206.1 CrossRefGoogle Scholar
  42. Young BG et al (2013) Agricultural weeds in glyphosate-resistant cropping systems in the United States. Weed Sci 61:85–97CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nathalie Colbach
    • 1
    • 2
  • Henri Darmency
    • 1
  • Alice Fernier
    • 1
  • Sylvie Granger
    • 1
  • Valérie Le Corre
    • 1
  • Antoine Messéan
    • 3
  1. 1.Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-ComtéDijonFrance
  2. 2.INRA, UMR1347 AgroécologieDijonFrance
  3. 3.Eco-Innov, INRAThiverval-GrignonFrance

Personalised recommendations