Environmental Science and Pollution Research

, Volume 24, Issue 33, pp 25582–25601 | Cite as

Analysis of the environmental issues concerning the deployment of an OTEC power plant in Martinique

  • Damien A. Devault
  • Anne Péné-Annette
4th International Symposium on Environmental Biotechnology and Engineering-2014


Ocean thermal energy conversion (OTEC) is a form of power generation, which exploits the temperature difference between warm surface seawater and cold deep seawater. Suitable conditions for OTEC occur in deep warm seas, especially the Caribbean, the Red Sea and parts of the Indo-Pacific Ocean. The continuous power provided by this renewable power source makes a useful contribution to a renewable energy mix because of the intermittence of the other major renewable power sources, i.e. solar or wind power. Industrial-scale OTEC power plants have simply not been built. However, recent innovations and greater political awareness of power transition to renewable energy sources have strengthened the support for such power plants and, after preliminary studies in the Reunion Island (Indian Ocean), the Martinique Island (West Indies) has been selected for the development of the first full-size OTEC power plant in the world, to be a showcase for testing and demonstration. An OTEC plant, even if the energy produced is cheap, calls for high initial capital investment. However, this technology is of interest mainly in tropical areas where funding is limited. The cost of innovations to create an operational OTEC plant has to be amortized, and this technology remains expensive. This paper will discuss the heuristic, technical and socio-economic limits and consequences of deploying an OTEC plant in Martinique to highlight respectively the impact of the OTEC plant on the environment the impact of the environment on the OTEC plant. After defining OTEC, we will describe the different constraints relating to the setting up of the first operational-scale plant worldwide. This includes the investigations performed (reporting declassified data), the political context and the local acceptance of the project. We will then provide an overview of the processes involved in the OTEC plant and discuss the feasibility of future OTEC installations. We will also list the extensive marine investigations required prior to installation and the dangers of setting up OTEC plants in inappropriate locations.


Renewable energy Power Coastal management Hot seas Tropical area Bathyal layer 



National Centre for Scientific Research


Shipbuilding, systems and service directorate


French institute for the development


French institute for study and exploitation of the seas


Ocean thermal energy conversion


Territorial collectivity of Martinique


Human Development Index



Authors want to thank DCNS and CTM for allowing them to use classified documents in order to write this paper. The authors sincerely thank Constance Haig for the first revision of the text and Stella Ghouti for her quick, extensive and efficient English reviewing.


  1. Abarnou A (2013) Contamination chimique du milieu marin : de la mesure à l’évaluation des risques. Ph.D Thesis Brest. 128ppGoogle Scholar
  2. Anderson DR, Bean RM, Gibson CI (1979) Biocide by-products in aquatic environments. Quarterly Progress ReportGoogle Scholar
  3. AREC (2012a) In French. Accessed April 30 2016
  4. AREC (2012b) In French. Accessed April 30 2016
  5. Autorité Environnementale (2015) Avis de l’Autorité Environnementale sur le dossier de demande d’autorisation d’exploiter une installation classée pour la protection de l’environnement (ICPE). 9pp. Accessed 9 July 2016
  6. Auvray C, Bouchet T, Blouin V (2012a) Etudes météocéaniques et du rejet: modélisation des courants. Energie Thermique des Mers (ETM) Projet de centrale pilote en Martinique. 12/INC/191. 35pp. In French. Confidential Google Scholar
  7. Auvray C, Bouchet T, Blouin V (2012b) Etudes météocéaniques et du rejet : modélisation des rejets. Energie Thermique des Mers (ETM) Projet de centrale pilote en Martinique. 12/INC/191. 65pp. In French. Confidential Google Scholar
  8. Balmori A (2015) Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci Tot Env 518-519:58–60CrossRefGoogle Scholar
  9. Berger LR, Berger JA (1986) Countermeasures to microbiofouling in simulated ocean thermal energy conversion heat exchangers with surface and deep ocean waters in Hawaii. Appl Environ Microbiol 51(6):1186–1198Google Scholar
  10. Boye M, Giraud M, Garçon V, Lejart M, Auvray C, Bœuf M, De La Broise D. (2015) Ocean thermal energy conversion, the potential impact on microplankton of bottom water discharge at sub-surface. Association for the Sciences of Limnology & Oceanography, 22–27 February 2015 GranadaGoogle Scholar
  11. Brandt AR (2011) Oil depletion and the energy efficiency of oil production: the case of California. Sustain 3(10):1833–1854CrossRefGoogle Scholar
  12. Buccafusco RJ, Ells SJ, LeBlanc GA (1981) Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull Environ Contam Toxicol 26(4):446–452CrossRefGoogle Scholar
  13. Carnot S (1824) Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Bachelier Ed, Paris. 59pp. In French Google Scholar
  14. Clark CE, Burnham AJ, Harto CB, Horner RM (2012) Introduction: the technology and policy of hydraulic fracturing and potential environmental impacts of shale gas development. Environ Pract 14(4):249–261CrossRefGoogle Scholar
  15. David V, Sautour B, Chardy P (2007) Successful colonization of the calanoid copepod Acartia tonsa in the oligo-mesohaline area of the Gironde estuary (SW France)—natural or anthropogenic forcing? Est, Coast Sh Sci 71(3–4):429–442CrossRefGoogle Scholar
  16. DEAL Martinique, Région Martinique (2013) Schéma Régional Climat Air Energie Martinique, 114pp.
  17. Dengler AT Jr, Wilde P (1987) Turbidity currents on steep slopes: application of an avalanche-type numeric model for ocean thermal energy conversion design. Ocean Engin 14(5):409–433CrossRefGoogle Scholar
  18. Ducatel C, Audoly C, Auvray C (2013) Prediction of OTEC underwater radiated noise and assessment of noise disturbance on cetaceans. 1st Underwater Acoustics international conference and exhibition. Corfu, June 2013Google Scholar
  19. Dugger GL (1975) Ocean thermal energy conversion. Astron Aeron 13(11):58–63Google Scholar
  20. Erickson SJ, Hawkins CE (1980) Effects of halogenated organic compounds on photosynthesis in estuarine phytoplankton. Bull Environ Contam Toxicol 24(6):910–915CrossRefGoogle Scholar
  21. Faizal M, Ahmed MR (2013) Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference. Renew Energy 51:234–240CrossRefGoogle Scholar
  22. Gaela HR, Ferry R (2015) Notes on some hydroids (Cnidaria) from Martinique, with descriptions of five new species Revue suisse de zoologie; annales de la Société zoologique suisse et du Muséum d’histoire naturelle de Genève 122, 2, 213–246Google Scholar
  23. Galenon P (2011) Les énergies renouvelables Outre-mer: laboratoire pour notre avenir, Conseil économique, social et environnemental Ed, Paris, 115pp. In French. Accessed 13 July 2016
  24. Gibson CI, Tone FC, Wilkinson P, Blaylock JW, Schirmer RE (1981) Toxicity, bioaccumulation and depuration of bromoform in five marine species. Pacific Northwest Lab, RichlandCrossRefGoogle Scholar
  25. Giraud M, Boye M, Garçon V, Donval A, de la Broise D (2016) Simulation of an artificial upwelling using immersed in situ phytoplankton microcosms. J Experimental Mar Biol Ecol 475:80–88CrossRefGoogle Scholar
  26. Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Series 321:1–7CrossRefGoogle Scholar
  27. Hammond GP, Howard HR, Jones CI (2013) The energy and environmental implications of UK more electric transition pathways: a whole systems perspective. En Pol 52:103–116CrossRefGoogle Scholar
  28. Harrison JT (1987) The 40 MWe OTEC plant at Kahe Point, Oahu, Hawaii: a case study of potential biological impacts. NOAA Technical Memorandum NMFS NOAA-TM-NMFS-SWFC-68Google Scholar
  29. Haslett SK (2009) Coastal systems, Routledge, 2009. 240pp. 107ppGoogle Scholar
  30. Havens P, Morgan C, MacDonald DA (2010) Environmental planning and management for OTEC pilot projects. MTS/IEEE Seattle, OCEANS 2010, art. no. 5664049Google Scholar
  31. Höffle H, Wernberg T, Thomsen MS, Holmer M (2012) Drift algae, an invasive snail and elevated temperature reduce ecological performance of a warm-temperate seagrass, through additive effects. Mar Ecol Prog Ser 450:67–80CrossRefGoogle Scholar
  32. Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Ch 106(4):679–690CrossRefGoogle Scholar
  33. IEDOM (2015a) Martinique rapport annuel 2015. 180 p. In French. Accessed 5 July 2016
  34. IEDOM (2015b) Saint Barthélémy rapport annuel 2015, 96 p. Accessed 5 July 2016
  35. Ikegami Y, Uehara H (1994) Optimum design point for a closed-cycle OTEC system. Proceedings of the International Offshore and Polar Engineering Conference 1, 383–389Google Scholar
  36. INSEE (2015) Enquête budget de famille 2011, INSEE Analyses Martinique n°7. In French. Accessed 5 July 2016,
  37. Jiai Y, Nihous GC, Richards KJ (2012) Effects of ocean thermal energy conversion systems on near and far field seawater properties—a case study for Hawaii. Journal of Renewable and Sustain En 4 (6), art. n°063104Google Scholar
  38. Jones I, Leach H (1999) Isopycnic modeling of the North Atlantic heat budget. J Geoph Res: Oceans 104(C1):1377–1392CrossRefGoogle Scholar
  39. Joubert WR, Thomalla SJ, Waldron HN, Lucas MI, Boye M, Le Moigne FAC, Planchon F, Speich S (2011) Nitrogen uptake by phytoplankton in the Atlantic sector of the Southern Ocean during late austral summer. Biogeosciences 8(10):2947–2959CrossRefGoogle Scholar
  40. Journal Officiel (2012) Décret no 2014-285 du 3 mars 2014 modifiant la nomenclature des installations classées pour la protection de l’environnement. 18pp. In French. Accessed April 30 2016.
  41. Kim NJ, Ng KC, Chun W (2009) Using the condenser effluent from a nuclear power plant for Ocean Thermal Energy Conversion (OTEC). International Communications in Heat and Mass Transfer 36(10):1008–1013CrossRefGoogle Scholar
  42. Krause JW, Nelson DM, Brzezinski MA (2011) Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography 58(3–4):434–448CrossRefGoogle Scholar
  43. Krylov VV (2010) Effects of electromagnetic fields on parthenogenic eggs of Daphnia magna Straus. Ecotoxicol Environ Saf 73(1):62–66CrossRefGoogle Scholar
  44. LeBlanc GA (1980) Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull. Environ Contam Toxicol 24(5):684–691CrossRefGoogle Scholar
  45. Lee W, Yang K-L (2014) Using medaka embryos as a model system to study biological effects of the electromagnetic fields on development and behavior. Ecotoxicol Environ Saf 108:187–194CrossRefGoogle Scholar
  46. Mattice JS, Tsai SC, Burch MB, Beauchamp JJ (1981) Toxicity of trihalomethanes to common carp embryos. Trans Am Fish Soc 110(2):261–269CrossRefGoogle Scholar
  47. Menesguen A, Monbet Y, Cousin F (1989) OTEC’s subsurface discharges of deep ocean water: modelling their effects on the primary production. American Society of Civil Engineers. Ocean Energy Recovery conference proceeding. 235–246Google Scholar
  48. Morisaki T, Ikegami Y (2012) Research on ocean thermal energy conversion using HFC245fa as working fluid. Proceedings of the International Offshore and Polar Engineering Conference, pp. 776–782Google Scholar
  49. Nihous GC (2005) An order-of-magnitude estimate of ocean thermal energy conversion resources. Journal of Energy Resources Technology, Transactions of the ASME 127(4):328–333CrossRefGoogle Scholar
  50. Nihous GC (2007) An estimate of Atlantic Ocean thermal energy conversion (OTEC) resources. Ocean Engin 34(17–18):2210–2221CrossRefGoogle Scholar
  51. NRJRUPplus (2007) Modelling study for the exploitation of marine resources for electricity generation in the outermost regions. Dirección General de Asuntos Económicos con la Unión Europea—Gobierno de Canarias (Ed). 68ppGoogle Scholar
  52. OMEGA (2015) Bilan Energétique de la Martinique, OMEGA Eds, Ducos, 68pp. In French.
  53. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain En Rev 15(3):1513–1524CrossRefGoogle Scholar
  54. Plocek TJ, Laboy M, Marti JA (2009) Ocean-thermal-energy conversion. JPT, J Petrol Technol 61(7):65–66CrossRefGoogle Scholar
  55. Rajagopalan H, Nihous GC (2013) An assessment of global ocean thermal energy conversion resources with a high-resolution ocean general circulation model. Trans ASME 135:1–9Google Scholar
  56. Rao G, Lin A (2011) Distribution of inundation by the great tsunami of the 2011 Mw 9.0 earthquake off the pacific coast of Tohoku (Japan), as revealed by ALOS imagery data. Intern J Rem Sens 32(22):7073–7086CrossRefGoogle Scholar
  57. Rio Carrillo AM, Frei C (2009) Water: a key resource in energy production. En Pol 37(11):4303–4312CrossRefGoogle Scholar
  58. Sansone FJ, Kearney TJ (1981) Chlorination kinetics of surface and deep tropical seawater. In R.L. Jolley, H.Gorchev, and D.R.Hamilton,Jr. (Eds.), Water chlorination: environmental impact and health effects, 5, 59, 755–762Google Scholar
  59. Secroun J-P (2016) NEMO Inquisitory OTEC. E1500014/97 172 ppGoogle Scholar
  60. Semmari H, Stitou D, Mauran S (2012) A novel Carnot-based cycle for ocean thermal energy conversion. Energy 43(1):361–375CrossRefGoogle Scholar
  61. Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29(1):1–11CrossRefGoogle Scholar
  62. Trabalka JR, MB Burch (1978) Investigation of the effects of halogenated organic compounds produced in cooling systems and process effluents on aquatic organisms. In R.L. Jolley, H. Gorchev, and D.R. Hamilton, Jr. (Eds.), Water chlorination: environmental impact and health effects: 163–173Google Scholar
  63. U.S. Environmental Protection Agency: U.S. EPA (1978) In-depth studies on health and environmental impacts of selected water pollutants, U.S. Environmental Protection Agency, Duluth, MinnesotaGoogle Scholar
  64. Uehara H, Ikegami Y (1993) Parametric performance analysis of OTEC using Kalina cycle. Solar Engin:203–207Google Scholar
  65. Vega LA (1992) Economics of ocean thermal energy conversion (OTEC). In: R.J. Seymour, ASCE Publications. Ocean energy recovery—the state of the art, pp. 152–181Google Scholar
  66. Vega LA (2010) Economics of ocean thermal energy conversion (OTEC): an update. Offshore technology conference. Houston, Texas, USA, 3–6 May 2010Google Scholar
  67. Vega LA (2012) Ocean thermal energy conversion. Encycl Sustainab Sci Technol, 7296–7328Google Scholar
  68. Vidussi F, Claustre H, Manca BB, Luchetta A, Marty JC (2001) Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J Geophys Res 106:19939–19956CrossRefGoogle Scholar
  69. Ward GS, Parrish PR, Rigby RA (1981) Early life stage toxicity tests with a saltwater fish: effects of eight chemicals on survival, growth, and development of sheepshead minnows. J Toxicol Environ Health 8(1–2):225–240CrossRefGoogle Scholar
  70. Werner E (1981) Integrated OTEC-mariculture system. Proceedings of the Ocean Energy Conference 1, pp. 229–233Google Scholar
  71. Worrall P, Hurtt J (2010) Dynamic medium voltage power cables. Proceedings of the Annual Offshore Technology Conference 3, pp. 2220–2234Google Scholar
  72. Yoza BA, Nihous GC, Takahashi PK, Golmen LG, War JC, Otsuka K, Ouchi K, Masutani SM (2010) Deep ocean water resources in the 21st century. Mar Technol Soc J 44(3):80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroparistechUniversité Paris-SaclayParisFrance
  2. 2.Laboratoire Matériaux et Molécules en Milieu Agressif, UA—UMR ECOFOG, DSICampus Universitaire de SchœlcherSchœlcherFrance
  3. 3.Laboratoire EA 929 AIHP-Geode-Biospheres Campus Universitaire de SchœlcherSchœlcherFrance

Personalised recommendations