Environmental Science and Pollution Research

, Volume 24, Issue 12, pp 11734–11751 | Cite as

Geochemical behavior of ultramafic waste rocks with carbon sequestration potential: a case study of the Dumont Nickel Project, Amos, Québec

  • El Hadji Babacar Kandji
  • Benoit PlanteEmail author
  • Bruno Bussière
  • Georges Beaudoin
  • Pierre-Philippe Dupont
Research Article


The geochemical behavior of ultramafic waste rocks and the effect of carbon sequestration by these waste rocks on the water drainage quality were investigated using laboratory-scale kinetic column tests on samples from the Dumont Nickel Project (RNC Minerals, QC, Canada). The test results demonstrated that atmospheric CO2 dissolution induced the weathering of serpentine and brucite within the ultramafic rocks, generating high concentrations of Mg and HCO3 with pH values ranging between 9 and 10 in the leachates that promote the precipitation of secondary Mg carbonates. These alkaline pH values appear to have prevented the mobilization of many metals; Fe, Ni, Cu, and Zn were found at negligible concentrations in the leachates. Posttesting characterization using chemical analyses, diffuse reflectance infrared Fourier transform (DRIFT), and scanning electron microscope (SEM) observations confirmed the precipitation of secondary hydrated Mg carbonates as predicted by thermodynamic calculations. The formation of secondary Mg carbonates induced cementation of the waste particles, resulting in the development of a hardpan.


Alkaline drainage Carbon sequestration Hydrated magnesium carbonate Kinetic column test Prediction Ultramafic waste rock 



The authors thank RNC Minrals and the Natural Sciences and Engineering Research Council (NSERC) for their contributions to a Research and Collaborative Grant, the Research Institute in Mining and Environment (RIME-UQAT) and the RNC Minerals staff. The URSTM (UQAT) staff is also acknowledged for their laboratory support during this project.

Supplementary material

11356_2017_8735_MOESM1_ESM.pdf (84 kb)
Figure S1 Cumulative and normalized column loadings for SO4, Mg, Si, and Ca (PDF 83 kb)
11356_2017_8735_MOESM2_ESM.pdf (254 kb)
Figure S2 Post column test dismantling (PDF 253 kb)
11356_2017_8735_MOESM3_ESM.pdf (23 kb)
Figure S3 Water saturation profile upon column dismantling (PDF 23 kb)


  1. Amos RT, Blowes DW, Bailey BL, Sego DC, Smith L, Ritchie AIM (2015) Waste-rock hydrogeology and geochemistry. Appl Geochem 57:140–156CrossRefGoogle Scholar
  2. Assima GP, Larachi F Beaudoin, G., Molson J (2012) CO2 sequestration in chrysotile mining residues: implication of watering and passivation under environmental conditions. Industrial & Engineering Chemistry Research, pp 2–10Google Scholar
  3. Assima GP, Larachi F, Beaudoin G, Molson J (2013) Dynamics of carbon dioxide uptake in chrysotile mining residues—effect of mineralogy and liquid saturation. International Journal of Greenhouse Gas Control 12:124–135CrossRefGoogle Scholar
  4. Assima GP, Larach IF, Beaudoin G, Molson J (2014a) Impact of temperature and oxygen availability on the dynamics of ambient CO2 mineral sequestration by nickel mining residues. Chem Eng J 240:394–403CrossRefGoogle Scholar
  5. Assima GP, Larachi F, Beaudoin G, Molson J (2014b) Emulation of ambient carbon dioxide diffusion and carbonation within nickel mining residues. Miner Eng 59:39–44CrossRefGoogle Scholar
  6. Assima GP, Larachi F, Molson J, Beaudoin G (2014c) Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxidemineral sequestration. Chem Eng J 245:56–64. doi: 10.1016/jcej201402010 CrossRefGoogle Scholar
  7. ASTM Standard D4892 (2014) Standard test method for density of solid pitch (Helium Pycnometer Method) West Conshohocken, PA, (
  8. ASTM Standard D6913-04 (2009) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. Annual Book of ASTM Standards vol. 0409Google Scholar
  9. Bales RC, Morgan JJ (1985) Dissolution kinetics of chrysotile at pH 7 to 10. Geochim Cosmochim Acta 49(11):2281–2288CrossRefGoogle Scholar
  10. Ballirano P, De Vito C, Ferrini V, Mignardi S (2010) The thermal behaviour and structural stability of nesquehonite, MgCO3·3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: new constraints on CO2 sequestration within minerals. J Hazard Mater 178:522–528CrossRefGoogle Scholar
  11. Bea SA, Wilson SA, Mayer KU, Dipple GM, Power IM, Gamazo P (2012) Reactive transport modeling of natural carbon sequestration in ultramafic mine tailings. Vadose Zone J 11(2)Google Scholar
  12. Beaudoin G, Hébert R, Constantin M (2008) Spontaneous carbonation of serpentine in milling and mining waste, southern Québec and Italy. Proceedings of Accelerated Carbonation for Environmental and Materials Engineering (ACEME2008), pp 73–82Google Scholar
  13. Beinlich A, Austrheim H (2012) In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mine shafts. Chem Geol 332-333:32–44CrossRefGoogle Scholar
  14. Bénézeth P, Saldi GD, Dandurand JL, Schott J (2011) Experimental determination of the solubility product of magnesite at 50 to 200 C. Chem Geol 286(1):21–31CrossRefGoogle Scholar
  15. Benzaazoua M, Bussière B, Dagenais A-M, Archambault M (2004) Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol 46(8 SPECISS):1086–1101CrossRefGoogle Scholar
  16. Blowes DW, Reardon EJ, Jambor JL, Cherry JA (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim Cosmochim Acta 55(4):965–978CrossRefGoogle Scholar
  17. Blum AE, Stillings LL (1995) Feldspar dissolution kinetics. Rev Mineral Geochem 31:291–351Google Scholar
  18. Botha A, Strydom CA (2001) Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy 62:175–183CrossRefGoogle Scholar
  19. Botha A, Strydom CA (2003) DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. J Therm Anal Calorim 71:987–995CrossRefGoogle Scholar
  20. Canterford JH, Tsambourakis G, Lambert B (1984) Some observations on the properties of dypingite, Mg5(CO3)4(OH)2·5H2O, and related minerals. Miner Mag 48(1984):437–442CrossRefGoogle Scholar
  21. Chapuis RP, Légaré PP (1992) A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. Effects of aggregates and mineral filler on asphalt mixture performance, ASTM STP 1147:177–186CrossRefGoogle Scholar
  22. Daval D, Hellmann R, Martinez I, Gangloff S, Guyot F (2013) Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO 2. Chem Geol 351:245–256CrossRefGoogle Scholar
  23. Davies PJ, Bubela B (1973) The transformation of nesquehonite into hydromagnesite. Chem Geol 12(4):289–300CrossRefGoogle Scholar
  24. Demers I, Bussière B, Benzaazoua M, Mbonimpa M, Blier A (2008) Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Miner Eng 21:317–329CrossRefGoogle Scholar
  25. Furrer G, Stumm W (1986) The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al 2 O 3 and BeO. Geochim Cosmochim Acta 50(9):1847–1860CrossRefGoogle Scholar
  26. Gautier Q, Bénézeth P, Mavromatis V, Schott J (2014) Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75 °C. Geochim Cosmochim Acta 138:1–20CrossRefGoogle Scholar
  27. Gilbert SE, Cooke DR, Hollings P (2003) The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material. Environ Geol 44(6):687–697CrossRefGoogle Scholar
  28. Goff F, Lackner KS (1998) Carbon dioxide sequestering using ultramafic rocks. Environ Geosci 5(3):89–101CrossRefGoogle Scholar
  29. Gras A, Beaudoin G, Molson JWH, Plante B, Bussière B, Lemieux JM, Dupont PP, (2017) Isotopic evidence of passive mineral carbonation in mine wastes from the Dumont Nickel Project (Abitibi, Quebec). To be publishedGoogle Scholar
  30. Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara mine (Morocco): 2. Mine waste geochemical behavior. Mine Water Environ 27(3):160–170CrossRefGoogle Scholar
  31. Hamilton JL, Wilson SA, Morgan B, Turvey CC, Paterson DJ, MacRae C, Southam G (2016) Nesquehonite sequesters transition metals and CO 2 during accelerated carbon mineralisation. International Journal of Greenhouse Gas Control 55:73–81CrossRefGoogle Scholar
  32. Hänchen M, Prigiobbe V, Baciocchi R, Mazzotti M (2008) Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure. Chem Eng Sci 63(4):1012–1028CrossRefGoogle Scholar
  33. Harrison AL, Power IM, Dipple GM (2012) Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environmental science & technology 47(1):126–134CrossRefGoogle Scholar
  34. Harrison AL, Dipple GM, Power IM, Mayer KU (2015) Influence of surface passivation and water content on mineral reactions in unsaturated porous media: implications for brucite carbonation and CO 2 sequestration. Geochim Cosmochim Acta 148:477–495CrossRefGoogle Scholar
  35. Harrison AL, Dipple GM, Power IM, Mayer KU (2016) The impact of evolving mineral–water–gas interfacial areas on mineral–fluid reaction rates in unsaturated porous media. Chem Geol 421:65–80CrossRefGoogle Scholar
  36. Hitch M, Ballantyne SM, Hindle SR (2010) Revaluing mine waste rock for carbon capture and storage. Int J Min Reclam Environ 24(1):64–79CrossRefGoogle Scholar
  37. Hopkinson L, Rutt K, Cressey G (2008) The transformation of nesquehonite to hydromagnesite in the system CaO-MgO-H2O-CO2: an experimental spectroscopic study. J Geol 116(4):387–400CrossRefGoogle Scholar
  38. Kandji EHB, Plante B, Bussière B, Beaudoin G, Dupont PP (2017) Geochemical behavior of ultramafic mine tailings with carbon sequestration potential. To be publishedGoogle Scholar
  39. Kohfahl C, Graupner T, Fetzer C, Pekdeger A (2010) The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps a field study of the Halsbrücke lead–zinc mine tailings (Germany). Sci Total Environ 408(23):5932–5939CrossRefGoogle Scholar
  40. Königsberger E, Königsberger LC, Gamsjäger H (1999) Low-temperature thermodynamic model for the system Na 2 CO 3− MgCO 3− CaCO 3− H 2 O. Geochim Cosmochim Acta 63(19):3105–3119CrossRefGoogle Scholar
  41. Krevor S, Lackner KS (2011) Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. International Journal of Greenhouse Gas Control 5(4):1073–1080CrossRefGoogle Scholar
  42. Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20:1153–1170CrossRefGoogle Scholar
  43. Langmuir D (1965) Stability of carbonates in the system MgO–CO2–H2O. The Journal of Geology:730–754Google Scholar
  44. Larachi F, Daldoul I, Beaudoin G (2010) Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: ex-situ and in-situ characterizations. Geochim Cosmochim Acta 74(11):3051–3075CrossRefGoogle Scholar
  45. Lawrence RW, Wang Y (1997) Determination of neutralization potential in the prediction of acid rock drainage. Proc, 4th International Conf on Acid Rock Drainage (ICARD) Vancouver, Canada, pp 451–464Google Scholar
  46. Lechat K, Lemieux JM, Molson J, Beaudoin G, Hébert R (2016) Field evidence of CO2 sequestration by mineral carbonation in ultramafic milling wastes, Thetford Mines, Canada. Int J Greenhouse Gas Control 47(2016):110–121CrossRefGoogle Scholar
  47. Li J, Hitch M (2016a) Carbon dioxide adsorption isotherm study on mine waste for integrated CO 2 capture and sequestration processes. Powder Technol 291:408–413CrossRefGoogle Scholar
  48. Li J, Hitch M (2016b) Mechanical activation of ultramafic mine waste rock in dry condition for enhanced mineral carbonation. Miner Eng 95:1–4CrossRefGoogle Scholar
  49. Li J, Hitch M (2017) Structural and chemical changes in mine waste mechanically-activated in various milling environments. Powder Technol 308:13–19CrossRefGoogle Scholar
  50. Lin FC, Clemency CV (1981) The dissolution kinetics of brucite, antigorite, talc, and phlogopite at room temperature and pressure. Am Mineral 66(7–8):801–806Google Scholar
  51. Luce RW, Bartlett RW, Parks GA (1972) Dissolution kinetics of magnesium silicates. Geochim Cosmochim Acta 36(1):p35CrossRefGoogle Scholar
  52. Merkus H (2009) Particle size measurements: fundamentals, practice, quality (Vol. 17). Springer Science & Business MediaGoogle Scholar
  53. Morgan B, Wilson SA, Madsen IC, Gozukara YM, Habsuda J (2015) Increased thermal stability of nesquehonite (MgCO3·3H2O) in the presence of humidity and CO2: implications for low-temperature CO2 storage. International Journal of Greenhouse Gas Control 39:366–376CrossRefGoogle Scholar
  54. Oskierski HC, Dlugogorski BZ, Jacobsen G (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem Geol 358:156–169CrossRefGoogle Scholar
  55. Paktunc AD (1999). Characterization of mine wastes for prediction of acid mine drainage. In Environmental impacts of mining activities (pp. 19–40). Springer, Berlin, HeidelbergGoogle Scholar
  56. Plante B, Benzaazoua M, Bussière B (2011) Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water Environ 30(1):2–21CrossRefGoogle Scholar
  57. Plante B, Bussière B, Benzaazoua M (2014) Lab to field scale effects on contaminated neutral drainage prediction from the Tio mine waste rocks. J Geochem Explor 137:37–47Google Scholar
  58. Pokrovsky OS, Schott J (2004) Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control. Geochim Cosmochim Acta 68(1):31–45CrossRefGoogle Scholar
  59. Power IM, Wilson SA, Thom JM, Dipple GM, Southam G (2007) Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem Trans 8(1):13Google Scholar
  60. Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chem Geol 260(3-4):286–300Google Scholar
  61. Power I, Harrison AL, Dipple GM, Wilson SA, Kelemen PB, Hitch M, Southam G (2013) Carbon mineralization: from natural analogues to engineered systems. Reviews in Mineralogy & Geochemistry, Mineralogical Society of America 77:305–360CrossRefGoogle Scholar
  62. Pronost J, Beaudoin G, Tremblay J, Larachi F, Hébert R, Constantin M, Duchesne J (2011) Carbon sequestration kinetics and storage capacity of ultramafic mining waste. Environmental Science & Technology 45:9413–9420CrossRefGoogle Scholar
  63. Pronost J, Beaudoin G, Lemieux J-M, Hébert R, Constantin M, Marcouiller S, Klein M, Duchesne J, Molson JW, Larachi F, Maldague X (2012) CO2-depleted warm air venting from chrysotile milling waste (Thetford Mines, Québec, Canada): evidence for in situ carbon capture from the atmosphere. Geology 40:275–278CrossRefGoogle Scholar
  64. Raade G (1970) Dypingite, a new hydrous basic carbonate of magnesium from Norway. Am Mineral 55:1457–1465Google Scholar
  65. Rietveld HM (1993) The Rietveld method. Oxford University Press, OxfordGoogle Scholar
  66. RNC (2013) Technical report on the Dumont Ni project. Launay and Trécesson Townships, QuebecGoogle Scholar
  67. Robie RA, & Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10^ 5 Pascals) pressure and at higher temperatures (No. 2131). USGPO; For sale by US Geological Survey, Information ServicesGoogle Scholar
  68. Rollo HA, Jamieson HE (2006) Interaction of diamond mine waste and surface water in the Canadian Arctic. Appl Geochem 21(9):1522–1538CrossRefGoogle Scholar
  69. Saldi GD, Jordan G, Schott J, Oelkers EH (2009) Magnesite growth rates as a function of temperature and saturation state. Geochim Cosmochim Acta 73:5646–5657CrossRefGoogle Scholar
  70. Scharer, J.M., Garg, V., Smith, R., Halbert, B.E. (1991) Use of steady state models for assessing acid generation in pyritic mine tailings. Proceedings, 2nd ICARD, Montreal CANMET, Ottawa, Vol 2, pp 211–229Google Scholar
  71. Schott J, Berner RA, Sjoberg EL (1981) Mechanism of pyroxene and amphibole weathering–I experimental studies of iron-free minerals. Geochim Cosmochim Acta 45:2123–2135CrossRefGoogle Scholar
  72. Sciortino M, Mungall JE, Muinonen J (2015) Generation of high-Ni sulfide and alloy phases during Serpentinization of dunite in the Dumont sill, Quebec. Econ Geol 110:733–761CrossRefGoogle Scholar
  73. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils. EPA-600/2–78-054 US Gov Print Office, Washington, DCGoogle Scholar
  74. SRK. (1989) Draft Acid Rock Drainage Technical Guide, Vancouver, CanadaGoogle Scholar
  75. Thom JG, Dipple GM, Power IM, Harrison AL (2013) Chrysotile dissolution rates: implications for carbon sequestration. Appl Geochem 35:244–254CrossRefGoogle Scholar
  76. USEPA. (2006) MINTEQA2, Metal speciation equilibrium model for surface and ground water, version 3.1 Available at:
  77. White WB (1971) Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate. The American Mineralogist 56(100):46–53Google Scholar
  78. White AF (2003). Natural weathering rates of silicate minerals In: Holland, HD, Turekian, KK (Ex Eds), Treatise on Geochemistry vol 5 Drever, JI (Ed) Surface and Ground Water, Weathering, and Soils, Elsevier, New York, 133–168Google Scholar
  79. White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals. Rev Mineral, Mineralogical Society of America, vol 31Google Scholar
  80. Wilson SA, Dipple GM, Power IM, Thom JM, Anderson RG, Raudsepp M, Gabites JE, Southam G (2009a) Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the Clinton Creek and Cassiar chrysotile deposits. Canada Economic Geology 104(1):95–112CrossRefGoogle Scholar
  81. Wilson SA, Raudsepp M, Dipple GM (2009b) Quantifying carbon fixation in trace minerals from processed kimberlite: a comparative study of quantitative methods using X-ray powder diffraction data with applications to the Diavik Diamond Mine, Northwest Territories, Canada. Appl Geochem 24(12):2312–2331CrossRefGoogle Scholar
  82. Wilson SA, Barker SL, Dipple GM, Atudorei V (2010) Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: implications for CO2 sequestration. Environmental science & technology 44(24):9522–9529CrossRefGoogle Scholar
  83. Wilson SA, Harrison AL, Dipple GM, Power IM, Barker SLL, Mayer KU, Fallon SJ, Raudsepp M, Southam G (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. International Journal of Greenhouse Gas Control 25:121–140CrossRefGoogle Scholar
  84. Zarandi AE, Larachi F, Beaudoin G, Plante B, Sciortino M (2016) Multivariate study of the dynamics of CO2 reaction with brucite-rich ultramafic mine tailings. International Journal of Greenhouse Gas Control 52:110–119CrossRefGoogle Scholar
  85. Zarandi AE, Larachi F, Beaudoin G, Plante B, Sciortino M (2017) Nesquehonite as a carbon sink in ambient mineral carbonation of ultramafic mining wastes. Chem Eng J 314:160–168CrossRefGoogle Scholar
  86. Zhang Z, Zheng Y, Ni Y, Liu Z, Chen J, Liang X (2006) Temperature and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. J Phys Chem B 110(26):12969–12973CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • El Hadji Babacar Kandji
    • 1
  • Benoit Plante
    • 1
    Email author
  • Bruno Bussière
    • 1
  • Georges Beaudoin
    • 2
  • Pierre-Philippe Dupont
    • 3
  1. 1.Research Institute in Mining and Environment (RIME)UQAT (Université du Québec en Abitibi-Témiscamingue)Rouyn-NorandaCanada
  2. 2.Department of Geology and Geological EngineeringUniversité LavalQuébecCanada
  3. 3.RNC MineralsAmosCanada

Personalised recommendations