Environmental Science and Pollution Research

, Volume 24, Issue 17, pp 14782–14794 | Cite as

Coffee, its roasted form, and their residues cause birth failure and shorten lifespan in dengue vectors

  • Hamady Dieng
  • Salbiah Binti Ellias
  • Tomomitsu Satho
  • Abu Hassan Ahmad
  • Fatimah Abang
  • Idris Abd Ghani
  • Sabina Noor
  • Hamdan Ahmad
  • Wan Fatma Zuharah
  • Ronald E. Morales Vargas
  • Noppawan P. Morales
  • Cirilo N. Hipolito
  • Siriluck Attrapadung
  • Gabriel Tonga Noweg
Research Article


In dengue mosquitoes, successful embryonic development and long lifespan are key determinants for the persistence of both virus and vector. Therefore, targeting the egg stage and vector lifespan would be expected to have greater impacts than larvicides or adulticides, both strategies that have lost effectiveness due to the development of resistance. Therefore, there is now a pressing need to find novel chemical means of vector control. Coffee contains many chemicals, and its waste, which has become a growing environmental concern, is as rich in toxicants as the green coffee beans; these chemicals do not have a history of resistance in insects, but some are lost in the roasting process. We examined whether exposure to coffee during embryonic development could alter larval eclosion and lifespan of dengue vectors. A series of bioassays with different coffee forms and their residues indicated that larval eclosion responses of Aedes albopictus and Ae. aegypti were appreciably lower when embryonic maturation occurred in environments containing coffee, especially roasted coffee crude extract (RCC). In addition, the lifespan of adults derived from eggs that hatched successfully in a coffee milieu was reduced, but this effect was less pronounced with roasted and green coffee extracts (RCU and GCU, respectively). Taken together, these findings suggested that coffee and its residues have embryocidal activities with impacts that are carried over onto the adult lifespan of dengue vectors. These effects may significantly reduce the vectorial capacity of these insects. Reutilizing coffee waste in vector control may also represent a realistic solution to the issues associated with its pollution.


Coffee Coffee waste Dengue vector Embryonic development Adult lifespan 


  1. Aly C, Mulla MS, Xu BZ, Schnetter W (1988) Rate of ingestion by mosquito larvae (Diptera: Culicidae) as a factor in the effectiveness of a bacterial stomach toxin. J Med Entomol 25:191–196CrossRefGoogle Scholar
  2. Araque P, Casanova H, Ortiz C, Henao B, Pelaez C (2007) Insecticidal activity of caffeine aqueous solutions and caffeine oleate emulsions against Drosophila melanogaster and Hypothenemus hampei. J Agri Food Chem 55(17):6918–6922CrossRefGoogle Scholar
  3. Bariyo N (2015) Coffee consumption expected to jump. [WWW document] URL http://www.wsj.com/articles/coffee-consumption-expected-to-jump-1424119985. Accessed 5 Nov 5 2015
  4. Beckel WE (1958) The morphology, histology and physiology of the spiracular regulatory apparatus of Hyalophora cecropia (L.) (Lepidoptera). Proc 10th Intl Congr Entomol 2:87–115Google Scholar
  5. Biocontrol Beat (2009) Coffee grounds for mosquito control. [WWW document]. URL https://biocontrolbeat.wordpress.com/2009/08/02/coffee-grounds-for-mosquito-control/. Accessed 11 Oct 2015
  6. Briegel H (1990a) Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol 36:165–172CrossRefGoogle Scholar
  7. Browne ML, Hoyt AT, Feldkamp ML, Rasmussen SA, Marshall EG, Druschel CM, Omitti PA (2011) Maternal caffeine intake and the risk of selected birth defects in the national birth defects prevention study. Birth Defects Res 91:93–101CrossRefGoogle Scholar
  8. Brunton LL, Lazo JS, Keith KL (2005) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New YorkGoogle Scholar
  9. Centers for Disease Control and Prevention/ Division of Vector-Borne Diseases (2015) Vector-borne diseases—at a glance. http://www.cdc.gov/ncezid/dvbd/. Accessed 3 Oct 2015
  10. Céspedes CL, Salazar JR, Alarcon J (2013) Chemistry and biological activities of Calceolaria spp. (Calceolariaceae: scrophulariaceae). Phytochem Rev 12(4):733–749CrossRefGoogle Scholar
  11. Chalker-Scott L (2009) Coffee grounds—will they perk up plants? http://puyallup.wsu.edu/wp-content/uploads/sites/403/2015/03/coffee-grounds.pdf. Accessed 7 Nov 2015
  12. Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R (2013) Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 6:280Google Scholar
  13. Clarke RJ (2013) Coffee volume 1 chemistry. Springer, New YorkGoogle Scholar
  14. Clements A (1992) The biology of mosquitoes: development, nutrition and reproduction. Chapman and Hall, New YorkGoogle Scholar
  15. Clements AN (1999) The biology of mosquitoes. vol. II. CABI Publishing, CambridgeGoogle Scholar
  16. Clements AN (2000) The biology of mosquitoes. vol. I. CABI Publishing, CambridgeGoogle Scholar
  17. Clifford MN (1979) Chlorogenic acids - their complex nature and routine determination in coffee beans. Food Chem 4:63–71Google Scholar
  18. Clifford MN, Kazi M (1987) The influence of coffee bean maturity on the content of chlorogenic acids, caffeine, and trigonelline. Food Chem 26:59–69CrossRefGoogle Scholar
  19. Costanzo KS, Schelble S, Jerz K, Keenan M (2015) The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Vector Ecol 40(1):164–171CrossRefGoogle Scholar
  20. da Silva JJ, Mendes J, Lomonaco C (2009) Effects of sublethal concentrations of diflubenzuron and methoprene on Aedes aegypti (Diptera: Culicidae) fitness. Intl J Trop Insect Sci 29:17–23CrossRefGoogle Scholar
  21. Daglia M, Cuzzoni MT, Dacarro C (1994) Antibacterial activity of coffee. J Agric Food Chem 42(10): 2270–2272Google Scholar
  22. Davies E (2011) Chemistry in every cup. Chemistry World 8(5):36–39Google Scholar
  23. Derraik JGB, Stanley D (2005) The toxicity of used coffee grounds to the larvae of Ochlerotatus (Finlaya) notoscriptus (Skuse) (Diptera: Culicidae). Ann Med Entomol 14:14–24Google Scholar
  24. Dia I, Diagne CT, Ba Y, Diallo D, Konate L, Diallo M (2012) Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago. Parasit Vectors 5:238CrossRefGoogle Scholar
  25. Dieng H, Boots M, Tamori N, Higashihara J, Okada T, Kato K, Eshita Y (2006) Some technical and ecological determinants of hatchability in Aedes albopictus (Diptera: Culicidae), a potential candidate for transposon-mediated transgenesis. J Am Mosq Cont Assoc 22:382–389CrossRefGoogle Scholar
  26. Dieng H, Saifur RGM, Abu Hassan A, Che Salmah MR, Boots M, Satho T, Zairi J, Sazaly A (2010) Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications. PLoS One 5:e11790CrossRefGoogle Scholar
  27. Dieng H, Saifur R, Abu Hassan A, Rawi CS, Boots M, Satho T, Zuharah WF, Fadzly N, Althbyani A, Miake F, Jaal Z, Abubakar S (2011) Discarded cigarette buds attract females and kill the progeny of Aedes albopictus. J Am Mosq Contr Assoc 27:263–271CrossRefGoogle Scholar
  28. Dieng H, Norrafiza BR, Ahmad AH, Che Salmah R, Hamdan A, Satho T, Miake F, Zuharah WF, Fukumistu Y, Ramli AS, Rajasaygar S, Vargas RE, Ab Majid AH, Fadzly N, Ghani IA, Abubakar S (2013) Colonized Aedes albopictus and its sexual performance in the wild: implications for SIT technology and containment. Parasit Vectors 6:206CrossRefGoogle Scholar
  29. Dieng H, Rajasaygar S, Ahmad AH, Md Rawi CS, Ahmad H, Satho T, Miake F, Zuharah WF, Fukumitsu Y, Saad AR, Abdul Hamid S, Vargas RE, Ab Majid AH, Fadzly N, Abu Kassim NF, Hashim NA, Ghani IA, Abang FB, Abubaka S (2014) Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 130C:123–130CrossRefGoogle Scholar
  30. Dowd PF, Vega FE (1996) Enzymatic oxidation products of allelochemicals as a basis for resistance against insects: effects on the corn leafhopper Dalbulus maidis. Nat Toxins 4:85–91CrossRefGoogle Scholar
  31. Enserink M (2008) A mosquito goes global. Science 320:864–866CrossRefGoogle Scholar
  32. Ezeakacha NF (2015) Environmental impacts and carryover effects in complex life cycles: the role of different life history stages. Ph D Thesis, University of Southern Mississippi, Hattiesburg. http://aquila.usm.edu/cgi/viewcontent.cgi?article=1205&context=dissertations. Accessed 14 Dec 2015
  33. Farah A (2012) Coffee constituents. In: Chu YF (ed) Coffee: emerging health effects and disease prevention. Wiley, West Sussex, pp 21–58CrossRefGoogle Scholar
  34. Farah A, Donangelo CM (2006) Phenolic compounds in coffee. Braz J Plant Physiol 18:23–36CrossRefGoogle Scholar
  35. Farah A, de Paulis T, Trugo LC, Martin PR (2006) Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffee. J Agric Food Chem 54:374–381CrossRefGoogle Scholar
  36. Fisk ID, Kettle A, Hofmeister S, Virdie A, Kenny JS (2012) Discrimination of roast and ground coffee aroma. Flavour 1:14CrossRefGoogle Scholar
  37. Foelix RF (2010) Biology of spiders. Oxford University Press, New YorkGoogle Scholar
  38. Franca AS, Oliveira SL, Mendonca CFJ, Silva AX (2005) Physical and chemical attributes of defective crude and roasted coffee beans. Food Chem 90:89–94CrossRefGoogle Scholar
  39. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R (2012) Association of coffee drinking with total and cause-specific mortality. N Engl J Med 366:1891–1904CrossRefGoogle Scholar
  40. Gawlik-Dziki U, Świeca M, Dziki D, Kowalska I, Pecio L, Durak A, Sęczyk L (2014) Lipoxygenase inhibitors and antioxidants from green coffee-mechanism of action in the light of potential bioaccessibility. Food Res Int 61:48–55CrossRefGoogle Scholar
  41. Goindin D, Delannay C, Ramdini C, Gustave J, Fouque F (2015) Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS One 10(8):e0135489CrossRefGoogle Scholar
  42. Green BS, McCormick MI (2005) Maternal and paternal effects determine size, growth and performance in larvae of a tropical reef fish. Mar Ecol Prog Ser 289:263–272CrossRefGoogle Scholar
  43. Gutierrez, D. (2015) Coffee antioxidants found to be 500 times more effective than vitamin C. http://www.naturalnews.com/049716_coffee_grounds_adrenal_fatigue_antioxidants.html. Accessed 21 March 2016
  44. Harwood RF, Horsfall WR (1959) Development, structure, and function of coverings of eggs of floodwater mosquitoes. III. Functions of coverings. Ann Entomol Soc Am 52:113–116CrossRefGoogle Scholar
  45. Helmenstine AM (2014) Caffeine chemistry. What is caffeine and how does it work? http://chemistry.about.com/od/moleculescompounds/a/caffeine.htm. Accessed 30 Dec 2015
  46. Hewavitharanage P, Karunaratne S, Kumar NS (1999) Effect of caffeine on shot-hole borer beetle (Xyleborusfornicatus) of tea (Camellia sinensis). Phytochemistry 51:35–41CrossRefGoogle Scholar
  47. Holscher W, Steinhart H (1995) Aroma compounds in green coffee. In: George C (ed) Developments in food science Vol. 37. Elsevier, LondonGoogle Scholar
  48. Horsfall WR (1956) Eggs of floodwater mosquitoes (Diptera: Culicidae). III. Conditioning and hatching of Aedes vexans. Ann Entomol Soc Am 49:66–71CrossRefGoogle Scholar
  49. Huntington J (2014) New health benefits from daily coffee. http://www.lifeextension.com/Magazine/2014/7/New-Health-Benefits-From-Daily-Coffee/Page-01. Accessed 10 Nov 2015
  50. Illy E (2002) The complexity of coffee. Sci Am 286:86–91CrossRefGoogle Scholar
  51. Itoyama MM, Bicudo HEMC (1992) Effects of caffeine on fecundity, egg laying capacity, development time and longevity in Drosophila prosaltans. Rev Bras Genet 15:303–321.Google Scholar
  52. Itoyama MM, Bicudo HEMC (1997) Effects of caffeine on mitotic index in Drosophila prosaltans (Diptera). Rev Bras Genet 20:655–658Google Scholar
  53. Itoyama MM, Bicudo HEMC, Manzato AJ (1998) The development of resistance to caffeine in Drosophila prosaltans: productivity and longevity after ten generations of treatment. Cytobios 96:81–93Google Scholar
  54. Jacobs CGC, Rezende GL, GEM L, van der Zee M (2013) The extraembryonic serosa protects the insect egg against desiccation. Proc R Soc B 280(1764):20131082CrossRefGoogle Scholar
  55. Jassbi AR (2003) Secondary metabolites as stimulants and antifeedants of Salix integra for the leaf beetle Plagiodera versicolora. Zeitschrift für Naturforschung C 58:573–579CrossRefGoogle Scholar
  56. Jiménez-Zamora A, Pastoriza S, Rufián-Henares JA (2015) Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT - Food Sci Technol 61(1):12CrossRefGoogle Scholar
  57. Joy TK, Arik AJ, Corby-Harris V, Johnson AA, Riehle MA (2010) The impact of larval and adult dietary restriction on lifespan, reproduction andgrowth in the mosquito Aedes aegypti. Exper Gerontol 45(2010):685–690CrossRefGoogle Scholar
  58. Kamgang B, Ngoagouni C, Manirakiza A, Nakouné E, Paupy C, Kazanji M (2013) Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis 7(12):e2590CrossRefGoogle Scholar
  59. Kamiabi F, Jaal Z, Keng CL (2013) Bioefficacy of crude extract of Cyperus aromaticus (Family: Cyperaceae) cultured cells, against Aedes aegypti and Aedes albopictus mosquitoes. Asian Pac J Trop Biomed 3(10):767–775CrossRefGoogle Scholar
  60. Kennedy B (2013) Grounds for sustainability: coffee for energy, fuel and a cleaner world. http://www.theguardian.com/sustainable-business/grounds-sustainability-coffee-energy-fuel-pollution. Accessed 23 Oct 2015
  61. Laranja AT, Manzatto AJ, de Campos Bicudo HEM (2003) Effects of caffeine and used coffee grounds on biological features of Aedes aegypti (Diptera, Culicidae) and their possible use in alternative control. Gen Mol Biol 26:419–429CrossRefGoogle Scholar
  62. Laranja AT, Manzato AJ, Bicudo HE (2006) Caffeine effect on mortality and oviposition in successive generations of Aedes aegypti. Rev Saude Publica 40:1112–1117CrossRefGoogle Scholar
  63. Laughlin CA, Morens DM, Cassetti MC, Costero-Saint Denis A, San Martin JL, Whitehead SS, Fauci AS (2012) Dengue research opportunities in the Americas. J Infect Dis 206:1121–1127CrossRefGoogle Scholar
  64. Leibrock A (2014) 6 ways the coffee industry is turning waste into a resource. http://www.sustainableamerica.org/blog/6-ways-the-coffee-industry-is-turning-waste-into-a-resource/. Accessed 21 Oct 2015
  65. Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2009) Identification of chlorogenic acid as a resistance factor for thrips in Chrysanthemum. Plant Physiol 150(3):1567–1575CrossRefGoogle Scholar
  66. Li J, Hodgeman BA, Christensen BM (1996) Involvement of peroxidase in chorion hardening in Aedes aegypti. Insect Biochem Mol Biol 26:309–317CrossRefGoogle Scholar
  67. Lizzi Y, Roggero JP, Coulomb PJ (1995) Behaviour of the phenolic compounds on Capsicum annuum leaves infected with Phytophtora capsici. J Phytopathol 143:619–627CrossRefGoogle Scholar
  68. Lu M, Wu W, Liu H (2013) Insecticidal and feeding deterrent effects of fraxinellone from Dictamnus dasycarpus against four major pests. Molecules 18:2754–2762CrossRefGoogle Scholar
  69. Luz C, Tai MMH, Santos AH, Silva HHG (2008) Impact of moisture on the survival of Aedes aegypti eggs and ovicidal activitiy of Metarhizium anisopliae under laboratory conditions. Mem Inst Oswaldo Cruz 103(2):214–215CrossRefGoogle Scholar
  70. Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, LondonGoogle Scholar
  71. Maciel de Freitas R, Codeco C, Lourenco de Oliveira R (2007) Body size-associated survival and dispersal rates of Aedes aeygpti in Rio de Janeiro. Med Vet Entomol 21:284–292CrossRefGoogle Scholar
  72. Mallikarjuna N, Kranthi KR, Jadhav DR, Kranthi S, Chandra S (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. J Appl Entomol 128:321–328CrossRefGoogle Scholar
  73. McCamey DA, Thorpe TM, McCarthy JP (1990) Coffee bitterness. In: Rouseff RI (ed) Developments in food science Vol 25. Elsevier, Amsterdam, pp 169–182Google Scholar
  74. Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evidence-Based Complem Altern Med 2013 (2013):Article ID 801457Google Scholar
  75. Miles PW, Oertli JJ (1993) The significance of antioxidants in the aphid-plant interaction: the redox hypothesis. Entomol Exp Appl 67:275–283CrossRefGoogle Scholar
  76. Morris AC (1997) Microinjection of mosquito embryos. In: Crampton JM, Beard CB, Louis C (eds) The molecular biology of insect disease vectors. Chapman & Hall, LondonGoogle Scholar
  77. Nathanson JA (1984) Caffeine and related methylxanthine possible naturally occurring pesticides. Science 226:184–187CrossRefGoogle Scholar
  78. Ooi EE, Goh KT, Gubler DJ (2006) Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis 12(6):887–893CrossRefGoogle Scholar
  79. Paquin P (2009) Functional and speciality beverage technology. CRC Press, Boca RatonCrossRefGoogle Scholar
  80. Parsons PA (1990) Fluctuating asymmetry: an epigenetic measure of stress. Biol Rev 63:131–145CrossRefGoogle Scholar
  81. Perez MH, Noriega FG (2014) Sub-lethal metal stress response of larvae of Aedes aegypti. Physiol Entomol 39(2):111–119Google Scholar
  82. Perrone D, Donangelo CM, Farah A (2008) Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography-mass spectrometry. Food Chem 110:1030–1035CrossRefGoogle Scholar
  83. Perrone D, Farah A, Donangelo CM (2012) Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J Agric Food Chem 60:4265–4275CrossRefGoogle Scholar
  84. Poisson J (1979) Aspects chimiques et biologiquesde la composition du café vert; 8th International Colloquium Chemicum Coffee, Abidjan, 28. Nov to 3. December 1988. ASIC 1979:33–37Google Scholar
  85. Ponnusamy L, Böröczky K, Wesson DM, Schal C, Apperson CS (2011) Bacteria stimulate hatching of yellow fever mosquito eggs. PLoS One 6(9):e24409CrossRefGoogle Scholar
  86. Preedy VR (2014) Processing and Impact on Antioxidants in Beverages. Elsevier, Oxford.Google Scholar
  87. Rakotobe L, Mezhoud K, Berkal M, Djediat C, Jeannoda V, Bodo B, Puiseux-Dao S, Mambu L, Edery M (2010) Acute toxic effects of 8-epidiosbulbin E, a 19-norclerodane diterpene from yam Dioscorea antaly, on medaka Oryzias latipes embryos. J Fish Biol 77(4):870–878CrossRefGoogle Scholar
  88. Reiskind MH, Lounibos LP (2009) Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol 23:62–68CrossRefGoogle Scholar
  89. Rezza G (2012) Aedes albopictus and the reemergence of dengue. BMC Pub Health 12:72CrossRefGoogle Scholar
  90. Rosay B (1959) Expansion of eggs of Culex tarsalis Coquillett and Aedes nigromaculis (Ludlow) (Diptera: Culicidae). Mosq News 19:270–273Google Scholar
  91. Rufián-Henares JA, Morales FJ (2007) Effect of in vitro enzymatic digestion on antioxidant activity of coffee melanoidins and fractions. J Agric Food Chem 55:10016–10021CrossRefGoogle Scholar
  92. Rufián-Henares JA, Morales FJ (2008a) Microtiter plate-based assay for screening antimicrobial activity of melanoidins against E. coli and S. aureus. Food Chem 111:1069–1074CrossRefGoogle Scholar
  93. Rufián-Henares JA, Morales FJ (2008b) Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane-damage mechanism. J Agric Food Chem 56:2357–2362CrossRefGoogle Scholar
  94. Rufián-Henares JA, Morales FJ (2009) Antimicrobial activity of coffee melanoidins—a study of their metal-chelating properties. J Agric Food Chem 57:432–438CrossRefGoogle Scholar
  95. Saifur RGM, Dieng H, Hassan AA, Satho T, Miake F, Boots M, Salmah RC, Abubakar S (2010) The effects of moisture on ovipositional responses and larval eclosion of Aedes albopictus. J Am Mosq Contr Assoc 26(4):373–380CrossRefGoogle Scholar
  96. Santo RM, Lima DR (2009) An unshamed defense of coffee: 101 reasons to drink coffee without guilt. Xlibris, PittsburghGoogle Scholar
  97. Sarkar M (2010) Bio-terrorism on six legs: insect vectors are the major threat to global health security. Webmed Central Pub Health 1:WMC001282Google Scholar
  98. Satho T, Dieng H, Muhammad Hishamuddin IA, Salbiah BE, Abu Hassan A, Abang FB, Ghani IA, Miake F, Hamdan A, Yuki F, Zuharah WF, Ab Majid AH, Abd Kassim NF, Hashim NA, Ajibola OO, Nolasco-Hipolito C (2015) Coffee and its waste repel gravid Aedes albopictus females and inhibit the development of their embryos. Parasit Vectors 8:272CrossRefGoogle Scholar
  99. Sawby R, Klowden MJ, Sjogren RD (1992) Sublethal effects of larval methoprene exposure on adult mosquito longevity. J Am Mosq Contr Assoc 8:290–292Google Scholar
  100. Schermerhorn JR (2012) Exploring management. Wiley, HobokenGoogle Scholar
  101. Schneider JR, Morrison AC, Astete H, Scott TW, Wilson ML (2004) Adult size and distribution of Aedes aegypti (Diptera: Culicidae) associated with larval habitats in Iquitos, Peru. J Med Entomol 41:634–642CrossRefGoogle Scholar
  102. Schofield CG (2000) Challenges of Chagas disease vector control in central America. WHO, Communicable Disease Control, Prevention and Eradication, WHO Pesticide Evaluation Scheme, GenevaGoogle Scholar
  103. Sehgal SS, Simões LCG, Jurand A (1977) Effects of caffeine on growth and metamorphosis of moth flyTelmatoscopus albipunctatus (Diptera, Psychodidae). Ent Exp Appl 21:174–181CrossRefGoogle Scholar
  104. Semmelroch P, Grosch W (1996) Studies on character impact odorants of coffee brews. J Agric Food Chem 44:537–543CrossRefGoogle Scholar
  105. Shimoda H, Seki E, Aitani M (2006) Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complem Altern Med 6:9CrossRefGoogle Scholar
  106. Sridevi V, Giridhar P, Ravishankar GA (2011) Evaluation of roasting and brewing effect on antinutritional diterpenes-cafestol and kahweol in coffee. Global J Med Res 11(5):1–7Google Scholar
  107. Stoks R, Córdoba-Aguilar A (2012) Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol 57(1):249–265CrossRefGoogle Scholar
  108. Strickman D (1980) Stimuli affecting selection of oviposition sites by Aedes vexans (Diptera: Culicidae): moisture. Mosq News 140:236–245Google Scholar
  109. Subedi A, Macurak M, Gee ST, Monge E, Goll MG, Potter CJ, Parsons MJ, Halpern ME (2014) Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods 66(3):433–440CrossRefGoogle Scholar
  110. Suman DS, Wang Y, Bilgrami AL, Gaugler R (2013) Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Trop 128:103–109CrossRefGoogle Scholar
  111. Sumanochitrapon W, Daniel S, Sithiprasana R, Kittayapong P, Innis BL (1998) Effect of size and geographic origin of Aedes aegypti on oral infection with dengue virus-2. AmJTrop Med Hyg 58:283–286CrossRefGoogle Scholar
  112. Suzuki A, Tsuda Y, Takagi M, Wada Y (1993) Seasonal observations on some population attributes of Aedes albopictus females in Nagasaki, Japan, with emphasis on the relation between the body size and the survival. Trop Med 35:91–99Google Scholar
  113. Systat Software Inc., Systat 11 data (2004) Systat for Windows: Statistics. Systat Software Inc., RichmondGoogle Scholar
  114. Tapiero H, Tew KD, Nguyen Ba G, Mathé G (2002) Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother 56:200–207CrossRefGoogle Scholar
  115. The Economic Times (2015) Coffee production. http://articles.economictimes.indiatimes.com/keyword/coffee-production. Accessed 5 Nov 2015
  116. Thenmozhi V, Hiriyan JG, Tewari SC (2007) Natural vertical transmission of dengue virus in Aedes albopictus (Diptera: Culicidae) in Kerala, a Southern Indian State. Jpn J Infect Dis 60:245–249Google Scholar
  117. Valencia MP, Miller L, Mazur P (1996) Permeabilization of eggs of the malaria mosquito Anopheles gambiae. Cryobiology 33:149–162CrossRefGoogle Scholar
  118. Vargas HCM, Farnesi LC, Martins AJ, Valle D, Rezende GL (2014) Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. J Insect Physiol 62:54–60CrossRefGoogle Scholar
  119. Vega-Rúa A, Zouache K, Girod R, Failloux AB, Lourenço-de-Oliveira R (2014) High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus. J Virol 88:6294–6306CrossRefGoogle Scholar
  120. Vontas J (2012) Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochem Physiol 104(2):126131 CrossRefGoogle Scholar
  121. Wang N (2012) Physicochemical changes of coffee beans during roasting Ph D Thesis, The University of Guelph. Ontario, CanadaGoogle Scholar
  122. Wink M (1992) The role of quinolizidine alkaloids in plant-insect interactions. In: Bernays E (ed) Insect-plant interactions, Vol. 4. CRC Press, Boca RatonGoogle Scholar
  123. World Health Organization (2012a) Dengue and severe dengue. http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 6 Oct 2015
  124. Yee DA, Kesavaraju B, Juliano SA (2004) Larval feeding behavior of three co-occurring species of container mosquitoes. J Vector Ecol 29:315–322Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hamady Dieng
    • 1
  • Salbiah Binti Ellias
    • 2
  • Tomomitsu Satho
    • 3
  • Abu Hassan Ahmad
    • 2
  • Fatimah Abang
    • 4
  • Idris Abd Ghani
    • 5
  • Sabina Noor
    • 4
  • Hamdan Ahmad
    • 2
  • Wan Fatma Zuharah
    • 2
  • Ronald E. Morales Vargas
    • 6
  • Noppawan P. Morales
    • 7
  • Cirilo N. Hipolito
    • 4
  • Siriluck Attrapadung
    • 6
  • Gabriel Tonga Noweg
    • 1
  1. 1.Institute of Biodiversity and Environmental Conservation (IBEC), Faculty of Resource Science and TechnologyUniversiti Malaysia SarawakKota SamarahanMalaysia
  2. 2.School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
  3. 3.Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
  4. 4.Faculty of Resource Science and TechnologyUniversiti Malaysia SarawakKota SamarahanMalaysia
  5. 5.Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  6. 6.Faculty of Tropical MedicineMahidol UniversityBangkokThailand
  7. 7.Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations