Environmental Science and Pollution Research

, Volume 24, Issue 11, pp 10083–10090 | Cite as

Association of urinary cadmium with risk of diabetes: a meta-analysis

  • Yujie Li
  • Yun Zhang
  • Weijing Wang
  • Yili Wu
Review Article


The association between urinary cadmium and diabetes risk remains controversial. PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang Data updated on 21 June 2016 were searched for eligible publications. Pooled odds ratio (OR) with 95% confidence interval (CI) of diabetes for highest versus lowest level of urinary cadmium was calculated by using fixed-effect model or random-effect model. Dose-response relationship between urinary cadmium and diabetes was estimated by restricted cubic spline. A total of nine studies with 28,691 participants were included in this meta-analysis. The pooled OR of diabetes for the highest versus lowest level of urinary cadmium was 1.02 (95% CI, 1.00, 1.05; I 2 = 42.3%). In subgroup analysis, the ORs were 1.02 (95% CI 1.00, 1.05; I 2 = 0.9%) for studies conducted in Asia and 1.11 (95% CI 0.88, 1.41; I 2 = 86.3%) in America. For dose-response analysis, a linear relationship was found between urinary cadmium and the risk of diabetes (P for nonlinear = 0.5856). For every l μg/g creatinine increment of urinary cadmium, the risk of diabetes increased by 16% (1.16, 95% CI 1.08, 1.25). This meta-analysis suggests that cadmium exposure might be significantly associated with prevalence of diabetes, but large prospective studies are needed to confirm this finding.


Urinary cadmium Diabetes Epidemiology Heavy metal Dose-response analysis Meta-analysis 



This work was supported by grants from the National Natural Science Foundation of China (81302485) and the Natural Science Foundation of Shandong Province (BS2013SF002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Berglund M, Akesson A, Nermell B, Vahter M (1994) Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environ Health Perspect 102:1058–1066CrossRefGoogle Scholar
  2. Bozorgmanesh M, Hadaegh F, Ghaffari S, Harati H, Azizi F (2011) A simple risk score effectively predicted type 2 diabetes in Iranian adult population: population-based cohort study. Eur J Pub Health 21:554–559. doi: 10.1093/eurpub/ckq074 CrossRefGoogle Scholar
  3. Chen X, Zhu G, Jin T, Gu S (2009a) Effects of cadmium on forearm bone density after reduction of exposure for 10 years in a Chinese population. Environ Int 35:1164–1168. doi: 10.1016/j.envint.2009.07.014 CrossRefGoogle Scholar
  4. Chen YW, Yang CY, Huang CF, Hung DZ, Leung YM, Liu SH (2009b) Heavy metals, islet function and diabetes development. Islets 1:169–176. doi: 10.4161/isl.1.3.9262 CrossRefGoogle Scholar
  5. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719. doi: 10.1016/j.biochi.2006.07.003 CrossRefGoogle Scholar
  6. Derakhshan A, Sardarinia M, Khalili D, Momenan AA, Azizi F, Hadaegh F (2014) Sex specific incidence rates of type 2 diabetes and its risk factors over 9 years of follow-up: Tehran lipid and glucose study. PLoS One 9:e102563. doi: 10.1371/journal.pone.0102563 CrossRefGoogle Scholar
  7. Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293. doi: 10.1016/j.taap.2009.03.007 CrossRefGoogle Scholar
  8. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634CrossRefGoogle Scholar
  9. Feng W et al (2015) Association of urinary metal profiles with altered glucose levels and diabetes risk: a population-based study in China. PLoS One 10:e0123742. doi: 10.1371/journal.pone.0123742 CrossRefGoogle Scholar
  10. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149. doi: 10.1016/j.diabres.2013.11.002 CrossRefGoogle Scholar
  11. Harrell FE, Jr., Lee KL, Pollock BG (1988) Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst 80:1198–202Google Scholar
  12. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. doi: 10.1002/sim.1186 CrossRefGoogle Scholar
  13. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. doi: 10.1136/bmj.327.7414.557 CrossRefGoogle Scholar
  14. Hoffmann K, Krause C, Seifert B (2001) The German environmental survey 1990/92 (GerES II): primary predictors of blood cadmium levels in adults. Arch Environ Health 56:374–379. doi: 10.1080/00039890109604471 CrossRefGoogle Scholar
  15. Hu FB (2011) Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34:1249–1257. doi: 10.2337/dc11-0442 CrossRefGoogle Scholar
  16. Hwangbo Y, Weaver VM, Tellez-Plaza M, Guallar E, Lee BK, Navas-Acien A (2011) Blood cadmium and estimated glomerular filtration rate in Korean adults. Environ Health Perspect 119:1800–1805. doi: 10.1289/ehp.1003054 CrossRefGoogle Scholar
  17. Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 29:1282–1297. doi: 10.1002/sim.3602 CrossRefGoogle Scholar
  18. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. doi: 10.2478/intox-2014-0009 CrossRefGoogle Scholar
  19. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208. doi: 10.1016/j.taap.2009.04.020 CrossRefGoogle Scholar
  20. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. doi: 10.1016/j.tox.2011.03.001 CrossRefGoogle Scholar
  21. Kawakami T, Nishiyama K, Kadota Y, Sato M, Inoue M, Suzuki S (2013) Cadmium modulates adipocyte functions in metallothionein-null mice. Toxicol Appl Pharmacol 272:625–636. doi: 10.1016/j.taap.2013.07.015 CrossRefGoogle Scholar
  22. Klaassen CD (1981) Pharmacokinetics in metal toxicity. Fundamental and applied toxicology: official journal of the Society of Toxicology 1:353–357CrossRefGoogle Scholar
  23. Kreuz S, Fischle W (2016) Oxidative stress signaling to chromatin in health and disease. Epigenomics. doi: 10.2217/epi-2016-0002 Google Scholar
  24. Kukongviriyapan U, Apaijit K, Kukongviriyapan V (2016) Oxidative stress and cardiovascular dysfunction associated with cadmium exposure: beneficial effects of curcumin and tetrahydrocurcumin. Tohoku J Exp Med 239:25–38. doi: 10.1620/tjem.239.25 CrossRefGoogle Scholar
  25. Lei LJ, Jin TY, Zhou YF (2007) Insulin expression in rats exposed to cadmium. Biomedical and environmental sciences: BES 20:295–301Google Scholar
  26. Liu B et al (2015) Association of urinary metals levels with type 2 diabetes risk in coke oven workers. Environ Pollut 210:1–8. doi: 10.1016/j.envpol.2015.11.046 CrossRefGoogle Scholar
  27. Menke A, Guallar E, Cowie CC (2016) Metals in urine and diabetes in U.S. Adults Diabetes 65:164–171. doi: 10.2337/db15-0316 Google Scholar
  28. Munafo MR, Flint J (2004) Meta-analysis of genetic association studies. Trends in genetics: TIG 20:439–444. doi: 10.1016/j.tig.2004.06.014 CrossRefGoogle Scholar
  29. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175:66–73. doi: 10.1093/aje/kwr265 CrossRefGoogle Scholar
  30. Satarug S, Moore MR (2012) Emerging roles of cadmium and heme oxygenase in type-2 diabetes and cancer susceptibility. Tohoku J Exp Med 228:267–288CrossRefGoogle Scholar
  31. Satarug S, Garrett SH, Sens MA, Sens DA (2011) Cadmium, environmental exposure, and health outcomes. Ciencia & saude coletiva 16:2587–2602. doi: 10.1289/ehp.0901234 CrossRefGoogle Scholar
  32. Schwartz GG, Il’yasova D, Ivanova A (2003) Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care 26:468–470CrossRefGoogle Scholar
  33. Son H-s et al (2015) Association of cadmium with diabetes in middle-aged residents of abandoned metal mines: the first health effect surveillance for residents in abandoned metal mines. Annals of occupational and environmental medicine:27. doi: 10.1186/s40557-015-0071-2
  34. Swaddiwudhipong W, Limpatanachote P, Nishijo M, Honda R, Mahasakpan P, Krintratun S (2010a) Cadmium-exposed population in Mae Sot district, Tak province: 3. Associations between urinary cadmium and renal dysfunction, hypertension, diabetes, and urinary stones. Journal of the Medical Association of Thailand = Chotmaihet thangphaet 93:231–238Google Scholar
  35. Swaddiwudhipong W, Mahasakpan P, Limpatanachote P, Krintratun S (2010b) Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: a population study. Environ Res 110:612–616. doi: 10.1016/j.envres.2010.06.002 CrossRefGoogle Scholar
  36. Tellez-Plaza M, Jones MR, Dominguez-Lucas A, Guallar E, Navas-Acien A (2013) Cadmium exposure and clinical cardiovascular disease: a systematic review. Current atherosclerosis reports 15:356. doi: 10.1007/s11883-013-0356-2 CrossRefGoogle Scholar
  37. Welinder H, Skerfving S, Henriksen O (1977) Cadmium metabolism in man. Br J Ind Med 34:221–228Google Scholar
  38. Zimmet PZ, Magliano DJ, Herman WH, Shaw JE (2014) Diabetes: a 21st century challenge. The Lancet Diabetes & Endocrinology 2:56–64. doi: 10.1016/s2213-8587(13)70112-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Epidemiology and Health StatisticsQingdao University Medical CollegeQingdaoChina
  2. 2.Department of Social Medicine and Health Service ManagementAffiliated Hospital of Qingdao UniversityQingdaoChina

Personalised recommendations