Environmental Science and Pollution Research

, Volume 24, Issue 13, pp 12016–12025 | Cite as

Traffic represents the main source of pollution in small Mediterranean urban areas as seen by lichen functional groups

  • Esteve LlopEmail author
  • Pedro Pinho
  • Manuel C Ribeiro
  • Maria João Pereira
  • Cristina Branquinho
Biomonitoring of atmospheric pollution: possibilities and future challenges


The land-use type (residential, green areas, and traffic) within relatively small Mediterranean urban areas determines significant changes on lichen diversity, considering species richness and functional groups related to different ecological factors. Those areas with larger volume of traffic hold lower species diversity, in terms of species richness and lichen diversity value (LDV). Traffic areas also affect the composition of the lichen community, which is evidenced by sensitive species. The abundance of species of lichens tolerant to low levels of eutrophication diminishes in traffic areas; oppositely, those areas show a higher abundance of species of lichens tolerating high levels of eutrophication. On the other hand, residential and green areas have an opposite pattern, mainly with species highly tolerant to eutrophication being less abundant than low or moderate ones. The characteristics of tree bark do not seem to affect excessively on lichen composition; however, tree species shows some effect that should be considered in further studies.


Bioindication Functional traits Pollution Air quality Small urban areas 



The work was done under the research project GISA, funded by private companies: GALP, Repsol, APS, AdSA, AICEP, CARBOGAL, EDP, EuroResinas, KIMAXTRA, REN, and GENERG and managed by local authorities: CCDRA, ARSA, and Municipalities of Sines, Santiago do Cacém, Grândola, Alácer do Sal, and Odemira. FCT-MCTES (SFRH/BPD/75425/2010 and SFRH/BD/86599/2012) and EC-FP7 (ENV.2013.6.2-5) for funding. The authors thank two anonymous reviewers for contributions that improved the manuscript.

Supplementary material

11356_2017_8598_MOESM1_ESM.docx (28 kb)
Supplementary Table 1 (DOCX 27 kb)


  1. Almeida SM, Ramos CA, Marques AM, Silva AV, Freitas MC, Farinha MN, Reis M, Marques AP (2012) Use of INAA and PIXE for multipollutant air quality assessment and management. J Radioanal Nucl Ch 294:343–347CrossRefGoogle Scholar
  2. Asta J, Erhardt W, Ferretti M, Fornasier F, Kirschbaum U, Nimis PL, Purvis OW, Pirintsos S, Scheidegger C, van Haluwyn C, Wirth V (2002) Mapping lichen diversity as an indicator of environmental quality. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Dordrecht, pp 273–279CrossRefGoogle Scholar
  3. Augusto S, Pereira MJ, Máguas C, Soares A, Branquiho C (2012) Assessing human exposure to polycyclic aromatic hydrocarbons (PAH) in a petrochemical region utilizing data from environmental biomonitors. J Toxicol Env Heal 75:819–830CrossRefGoogle Scholar
  4. Augusto S, Pinho P, Santos A, Botelho MJ, Palma-Oliveira J, Branquinho C (2015) Declining trends of PCDD/Fs in lichens over a decade in a Mediterranean area with multiple pollution sources. Sci Total Env 508:95–100CrossRefGoogle Scholar
  5. Canha N, Almeida-Silva M, Freitas MC, Almeida SM, Wolterbeek HT (2012) Lichens as biomonitors at indoor environments of primary schools. J Radioanal Nucl Ch 291:123–128CrossRefGoogle Scholar
  6. Carvalho P, Figueira R, Jones M, Sérgio C, Sim-Sim M, Catarino F (2002a) Dynamics of epiphytic lichen communities in an industrial area of Portugal. In: Llimona X, Lumbsch HT, Ott S (eds) Progress and problems in lichenology at the turn of the millennium—IAL 4. J. Cramer, Berlin-Stuttgart, pp 175–185Google Scholar
  7. Carvalho P, Figueira R, Jones M, Sérgio C, Sim-Sim M (2002b) Biodiversidade da vegetação epifítica liquénica no litoral alentejano. Área de Sines. Portugalia Acta Biol 20:225–248Google Scholar
  8. CEN (2014) UNE-EN 16413:2014. Ambient air—biomonitoring with lichens—assessing epiphytic lichen diversity. European Committee for Standardization, BrusselsGoogle Scholar
  9. Cepeda JM, García-Rowe J (2002) Identification and quantification of bioindicator values of lichens under urban conditions. In: Llimona X, Lumbsch HT, Ott S (eds) Progress and problems in lichenology at the turn of the millennium—IAL 4. J. Cramer, Berlin-Stuttgart, pp 187–195Google Scholar
  10. Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464. doi: 10.1038/379126b0 CrossRefGoogle Scholar
  11. CLC (2006). Corine land cover 2006. European Environment Agency. Accessed 15 June 2015
  12. Cugny P, Vincent JP (1996) Analyse factorielle de la distribution de la flore lichénique en zone urbaine. Mise en évidence de zones de pollution dans l’agglomération toulousaine. Bull Soc Hist Nat Toulouse 132:41–47Google Scholar
  13. DESA (2015) World urbanization prospects. The 2014 revision. United Nations. Department of Economics and Social Affairs, Population Division, New York, NYGoogle Scholar
  14. EEA (2006) Urban sprawl in Europe: the ignored challenge. EEA report no 10/2006. European Environment Agency, CopenhagenGoogle Scholar
  15. EEA (2010) The European environment—state and outlook 2010: thematic assessment—urban environment. European Environment Agency, CopenhagenGoogle Scholar
  16. EEA (2012) Urban adaptation to climate change in Europe. Challenges and opportunities for cities together with supportive national and European policies. EEA report no 2/2012. European Environment Agency, DenmarkGoogle Scholar
  17. Frati L, Brunialti G, Loppi S (2008) Effects of reduced nitrogen compounds on epiphytic lichen communities in Mediterranean Italy. Sci Total Environ 407:630–637CrossRefGoogle Scholar
  18. Freitas MC, Martinho M (2011) Investigation of associations between chemical element contents in native lichens and childhood leukaemia. Int J Env Heal 5:125–133CrossRefGoogle Scholar
  19. Freitas MC, Reis MA, Alves LC, Wolterbeek HT (1999) Distribution of some pollutants in the lichen Parmelia sulcata. Environ Pollut 106:229–235CrossRefGoogle Scholar
  20. Garrido-Benavent I, Llop E, Gómez-Bolea A (2015) The effect of agriculture management and fire on epiphytic lichens on holm oak trees in the eastern Iberian Peninsula. Lichenologist 47:59–68CrossRefGoogle Scholar
  21. Gombert S, Asta J, Seaward MRD (2003) Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environ Pollut 123:281–290CrossRefGoogle Scholar
  22. Gombert S, Asta J, Seaward MRD (2006) Lichens and tobacco plants as complementary biomonitors of air pollution on the Grenoble area (Isère, Southeast France). Ecol Indicat 6:429–443CrossRefGoogle Scholar
  23. IM (2010) Instituto de Meteorologia, Sines Meteorological Station (2000–2009). Accessed 01 June 2015
  24. INE (2013) Censos 2011. Instituto Nacional de Estatísticas de Portugal, LisboaGoogle Scholar
  25. Jones M, Catarino FG, Sérgio C, Bento-Pereira F (1981) The Sines industrial complex monitoring programme: a preliminary report. Environ Assess 1:163–173CrossRefGoogle Scholar
  26. Käffer MI, Koch NM, Martins SMA, Vargas VM (2016) Lichen community versus host tree bark texture in an urban environment in Southern Brazil. Inheringia-Ser Bot 71:49–54Google Scholar
  27. Koch NM, Branquinho C, Matos P, Pinho P, Lucheta F, Martins SMA, Vargas VMF (2016) The application of lichens as ecological surrogates of air pollution in the subtropics: a case study in South Brazil. Environ Sci Pollut Res. doi: 10.1007/s11356-016-7256-2 Google Scholar
  28. Llop E, Pinho P, Matos P, Pereira MJ, Branquinho C (2012) The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment. Ecol Indicat 13:215–221CrossRefGoogle Scholar
  29. Loppi S, Ivanov D, Boccardi R (2002) Biodiversity of epiphytic lichens and air pollution in the town of Siena (central Italy). Environ Pollut 116:123–128CrossRefGoogle Scholar
  30. McCune B, Mefford MJ (2011) PC-ORD: multivariate analysis of ecological data version 6.0. MjM Software, Gleneden Beach, OregonGoogle Scholar
  31. Munzi S, Correia O, Silva P, Lopes N, Freitas C, Branquinho C, Pinho P (2014) Lichens as ecological indicators in urban areas: beyond the effects of pollutants. J Appl Ecol 51:1750–1757CrossRefGoogle Scholar
  32. Munzi S, Ravera S, Caneva G (2007) Epiphytic lichens as indicators of environmental quality in Rome. Environ Pollut 146:350–358CrossRefGoogle Scholar
  33. Nimis PL, Martellos S (2008) ITALIC—The Information System on Italian Lichens Version 40 University of Trieste, Dept of Biology, IN40/1. italic. Accessed 15 May 2015
  34. Pacheco AMG, Freitas MC, Baptista MS, Vasconcelos MTSD, Cabral JP (2008) Elemental levels in tree-bark and epiphytic-lichen transplants at a mixed environment in mainland Portugal, and comparisons with an in situ lichen. Environ Pollut 151:326–333CrossRefGoogle Scholar
  35. Paoli L, Benesperi R, Proietti Pannunzi D, Corsini A, Loppi S (2014) Biological effects of ammonia released from a composting plant assessed with lichens. Environ Sci Pollut Res 21:5861–5872CrossRefGoogle Scholar
  36. Paoli L, Grassi A, Vannini A, Maslaňáková I, Bil’ová I, Bačkor M, Corsini A, Loppi S (2015) Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C Italy). Waste Manag 42:67–73CrossRefGoogle Scholar
  37. Paoli L, Munzi S, Fiorini E, Gaggi C, Loppi S (2013) Influence of angular exposure and proximity to vehicular traffic to diversity of epiphytic lichens and the bioaccumulation of traffic-related elements. Environ Sci Pollut Res 20:250–259CrossRefGoogle Scholar
  38. Perlmutter GB (2010) Bioassessing air pollution effects with epiphytic lichens in Raleigh, North Carolina, USA. Bryologist 113:39–50CrossRefGoogle Scholar
  39. Pinho P, Augusto S, Branquinho C, Bio A, Pereira MJ, Soares A, Catarino F (2004) Mapping lichen diversity as a first step for air quality assessment. J Atmos Chem 49:377–389CrossRefGoogle Scholar
  40. Pinho P, Augusto S, Máguas C, Pereira MJ, Soares A, Branquinho C (2008) Impact of neighbourhood land-cover in epiphytic lichen diversity: analysis of multiple factors working at different spatial scales. Environ Pollut 151:414–422CrossRefGoogle Scholar
  41. Pinho P, Branquinho C, Cruz C, Tang YS, Dias T, Rosa AP, Sutton MA, Máguas C, Martins-Loução MA (2009) Assessment of critical levels of atmospheric ammonia for lichen diversity in cork-oak woodland, Portugal. In: Sutton MA, Reis S, Baker S (eds) Atmospheric ammonia. Springer Science, Heidelberg, pp 109–120CrossRefGoogle Scholar
  42. Pinho P, Dias T, Cruz C, Tang YS, Sutton MA, Martins-Loução MA, Máguas C, Branquinho C (2011) Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. J Appl Ecol 48:1107–1116CrossRefGoogle Scholar
  43. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  44. Ranta P (2001) Changes in urban lichen diversity after a fall in sulphur dioxide levels in the city of Tampere, SW Finland. Ann Bot Fenn 38:295–304Google Scholar
  45. Ribeiro MC, Pinho P, Llop E, Branquinho C, Soares A, Pereira MJ (2014) Associations between outdoor air quality and birth weight: a geostatistical sequential simulation approach in Coastal Alentejo, Portugal. Stoch Environ Res Risk Assess 28:527–540CrossRefGoogle Scholar
  46. Ribeiro MC, Pinho P, Branquinho C, Llop E, Pereira MJ (2016) Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: a health study in the urban area of Sines, Portugal. Sci Total Environ 562:740–750CrossRefGoogle Scholar
  47. Saipunkaew W, Wolseley PA, Chimonides PJ, Boonpragob K (2007) Epiphytic macrolichens as indicators of environmental alteration in northern Thailand. Environ Pollut 146:366–374CrossRefGoogle Scholar
  48. Sergio C, Bento-Pereira F (1981) Líquenes e briófitos como bioindicadores da poluição atmosférica. I. Utilização de uma escala qualitativa para Lisboa. Bol Soc Broteriana 54:291–303Google Scholar
  49. Sergio C, Carvalho P, Garcia CA, Almeida E, Novais V, Sim-Sim M, Jordão H, Sousa AJ (2016) Floristic changes of epiphytic flora in the Metropolitan Lisbon area between 1980 and 1981 and 2010–2011 related to urban air quality. Ecol Indic 67:839–852CrossRefGoogle Scholar
  50. Stamenković SM, Ristić S, Đekić TL, TLJ M, Baosić RM (2013) Air quality indication in Blace (southeastern Serbia) using lichens as bioindicators. Arch Biol Sci 65:893–897CrossRefGoogle Scholar
  51. Stofer S, Calatayud V, Giordani P, Neville P (2012) Assessment of epiphytic lichen diversity. Manual part VII.2. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg ( Accessed 29 May 2015)Google Scholar
  52. Washburn SJ, Cullen TM (2006) Epiphytic macrolichens of the greater Cincinnati metropolitan area—part II: distribution, diversity and urban ecology. Bryologist 109:516–526CrossRefGoogle Scholar
  53. WHO (2000) WHO air quality guidelines for Europe 2nd ed. WHO Regional Publication, European Series No 91 CopenhagenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centre for Ecology, Evolution and Environmental ChangesFaculdade de Ciências, Universidade de Lisboa (cE3c-FC-UL)LisbonPortugal
  2. 2.Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de BarcelonaBarcelonaSpain
  3. 3.Centro de Recursos Naturais e AmbienteInstituto Superior Técnico, Universidade de Lisboa (CERENA-IST-UL)LisbonPortugal

Personalised recommendations