Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characteristics and source apportionment of black carbon aerosols over an urban site


Aethalometer based source apportionment model using the measured aerosol absorption coefficients at different wavelengths is used to apportion the contribution of fossil fuel and wood burning sources to the total black carbon (BC) mass concentration. Temporal and seasonal variabilities in BC mass concentrations, equivalent BC from fossil fuel (BC f f ), and wood burning (BC w b ) are investigated over an urban location in western India during January 2014 to December 2015. BC, BC f f , and BC w b mass concentrations exhibit strong diurnal variation and are mainly influenced by atmospheric dynamics. BC f f was higher by a factor of 2–4 than BC w b and contributes maximum to BC mass throughout the day, confirming consistent anthropogenic activities. Diurnal contribution of BC f f and BC w b exhibits opposite variation due to differences in emission sources over Ahmedabad. Night time BC values are about a factor of 1.4 higher than day time BC values. The annual mean percentage contributions of day time and night time are 42 and 58 %, respectively. BC, BC f f , and BC w b mass concentrations exhibit large and significant variations during morning, afternoon, evening, and night time. During afternoon, mass concentration values are minimum throughout the year because of the fully evolved boundary layer and reduced anthropogenic activities. BC exhibits a strong seasonal variability with postmonsoon high (8.3 μg m −3) and monsoon low (1.9 μg m −3). Annual mean BC f f and BC w b contributions are 80 and 20 %, respectively, to total BC, which suggests that major contribution of BC in Ahmedabad comes from fossil fuel emissions. The results show that the study location is dominated by fossil fuel combustion as compared to the emissions from wood burning. The results obtained represent a regional value over an urban regime which can be used as inputs on source apportionment to model BC emissions in regional and global climate models.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Arnott W, Hamasha K, Moosmüller H, Sheridan P, Ogren J (2005) Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci Technol 39(1):17–29

  2. Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40(1):27–67. doi:10.1080/02786820500421521

  3. Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res Atmos. doi:10.1029/2003JD003697. d14203

  4. Chameides WL, Yu H, Liu SC, Bergin M, Zhou X, Mearns L, Wang G, Kiang CS, Saylor RD, Luo C, Huang Y, Steiner A, Giorgi F (1999) Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls? Proc Nat Acad Sci 96(24):13,626–13,633. doi:10.1073/pnas.96.24.13626

  5. CollaudCoen M, Weingartner E, Apituley A, Ceburnis D, Flentje H, Henzing JS, Jennings SG, Moerman M, Petzold A, Schmidhauser R, Schmid O, Baltensperger U (2010) Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos Meas Tech 3:457–474

  6. Crilley LR, Bloss WJ, Yin J, Beddows DCS, Harrison RM, Allan JD, Young DE, Flynn M, Williams P, Zotter P, Prevot ASH, Heal MR, Barlow JF, Halios CH, Lee JD, Szidat S, Mohr C (2015) Sources and contributions of wood smoke during winter in London: assessing local and regional influences. Atmos Chem Phys 15(6):3149–3171. doi:10.5194/acp-15-3149-2015

  7. Day DE, Hand JL, Carrico CM, Engling G, Malm WC (2006) Humidification factors from laboratory studies of fresh smoke from biomass fuels. J Geophys Res Atmos 111(D22). doi:10.1029/2006JD007221. d22202

  8. Draxler RR, Hess GD (1998) An overview of the HYSPLIT-4 modelling system for trajectories, dispersion and deposition. Aus Meteorol Mag 47(4):295–308

  9. Favez O, El Haddad I, Piot C, Boréave A, Abidi E, Marchand N, Jaffrezo JL, Besombes JL, Personnaz MB, Sciare J, Wortham H, George C, D’Anna B (2010) Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmos Chem Phys 10(12):5295–5314. doi:10.5194/acp-10-5295-2010

  10. Forbes M, Raison R, Skjemstad J (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370(1):190–206

  11. Fuller GW, Tremper AH, Baker TD, Yttri KE, Butterfield D (2014) Contribution of wood burning to PM10 in London. Atmos Environ 87(0):87–94

  12. Gadhavi H, Jayaraman A (2010) Absorbing aerosols: contribution of biomass burning and implications for radiative forcing. In: Annales Geophysicae, European Geosciences Union, vol 28, pp 103–111

  13. Garg S, Chandra BP, Sinha V, Sarda-Esteve R, Gros V, Sinha B (2016) Limitation of the use of the absorption angstrom exponent for source apportionment of equivalent black carbon: a case study from the north west indo-gangetic plain. Environ Sci Technol 50(2):814–824. doi:10.1021/acs.est.5b03868

  14. Gelencser A, May B, Simpson D, Sánchez-Ochoa A, Kasper-Giebl A, Puxbaum H, Caseiro A, Pio C, Legrand M (2007) Source apportionmentv of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin. J Geophys Res Atmos. doi:10.1029/2006JD008094

  15. Hansen ADA, Rosen H, Novakov T (1984) The Aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ 36:191–196

  16. Harrison RM, Beddows DCS, Hu L, Yin J (2012) Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations. Atmos Chem Phys 12(17):8271–8283. doi:10.5194/acp-12-8271-2012

  17. Heal M (2014) The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review. Anal Bioanalyt Chem 406:81–98. doi:10.1007/s00216-013-7404-1

  18. Herich H, Hueglin C, Buchmann B (2011) A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmos Measur Tech 4(7):1409–1420. doi:10.5194/amt-4-1409-2011

  19. Jacobson MZ (2000) A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophys Res Lett 27:217–220

  20. Kirchstetter TW, Novakov T, Hobbs PV (2004) Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res Atmos. doi:10.1029/2004JD004999

  21. Krishnan P, Kunhikrishnan P (2004) Temporal variations of ventilation coefficient at a tropical Indian station using UHF wind profiler. Curr Sci 86(3):447–451

  22. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864

  23. Lewis K, Arnott WP, Moosmüller H, Wold CE (2008) Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J Geophys Res Atmos. doi:10.1029/2007JD009699. d16203

  24. Li C, Bosch C, Kang S, Andersson A, Chen P, Zhang Q, Cong Z, Chen B, Qin D, Gustafsson (2016) Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nat Commun 7(12574):1–7. doi:10.1038/ncomms12574

  25. Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A global three-dimensional model study of carbonaceous aerosols. J Geophys Res Atmos 101(D14):19,411–19,432. doi:10.1029/95JD03426

  26. Mauderly JL, Chow JC (2008) Health effects of organic aerosols. Inhalat Toxicol 20(3):257–288. doi:10.1080/08958370701866008

  27. Ramachandran S, Rajesh TA (2007) Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: comparison with urban sites in Asia, Europe, Canada, and the United States. J Geophys Res. doi:10.1029/2006JD007488

  28. Ramanathan V, Crutzen P (2003) New directions: atmospheric brown clouds. Atmos Environ 37(28):4033–4035

  29. Sandradewi J, Prévôt A, Weingartner E, Schmidhauser R, Gysel M, Baltensperger U (2008a) A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmos Environ 42(1):101–112

  30. Sandradewi J, Prevot AS, Szidat S, Perron N, Alfarra MR, Lanz VA, Weingartner E, Baltensperger U (2008b) Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ Sci Technol 42(9):3316–3323

  31. Schmid O, Artaxo P, Arnott WP, Chand D, Gatti LV, Frank GP, Hoffer A, Schnaiter M, Andreae MO (2006) Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: comparison and field calibration of absorption measurement techniques. Atmos Chem Phys 6(11):3443–3462. doi:10.5194/acp-6-3443-2006

  32. Sinha PR, Manchanda RK, Kaskaoutis DG, Kumar YB, Sreenivasan S (2013) Seasonal variation of surface and vertical profile of aerosol properties over a tropical urban station Hyderabad, India. J Geophys Res Atmos 118(2):749–768. doi:10.1029/2012JD018039

  33. Srivasatava R, Ramachandran S, Rajesh TA, Kedia S (2011) Aerosol radiative forcing deduced from observations and model estimates over an urban location and sensitivity to single scattering albedo. Atmos Env 45:6163–6171

  34. Srivastava AK, Singh S, Pant P, Dumka UC (2012) Characteristics of black carbon over Delhi and Manora Peak—a comparative study. Atmos Sci Lett 13(3):223–230. doi:10.1002/asl.386

  35. Stull RB (2012) An introduction to boundary layer meteorology, vol 13. Springer Science & Business Media

  36. Tiwari S, Pipal A, Srivastava A, Bisht D, Pandithurai G (2014) Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique. Environ Sci Pollut Res:1–10

  37. Viana M, Reche C, Amato F, Alastuey A, Querol X, Moreno T, Lucarelli F, Nava S, Calzolai G, Chiari M, Rico M (2013) Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. Atmos Environ 72:81–88. doi:10.1016/j.atmosenv.2013.02.031

  38. Wang C, Kim D, Ekman AM, Barth MC, Rasch PJ (2009) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett 36(21)

  39. Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aerosol Sci 34:1445–1463

Download references


The authors thank the Indian Space Research Organisation (ISRO), Bengaluru, for the financial support provided by ISRO-GBP under ARFI project. Daily mean temperature, relative humidity, and wind speed data were obtained from National Climatic Data Center, USA via http://www.cdc.noaa.gov. TRMM rainfall data is downloaded from GES-DISC, NASA. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model (http://www.ready.noaa.gov).

Author information

Correspondence to T. A. Rajesh.

Additional information

Responsible Editor: Constantini Samara

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajesh, T.A., Ramachandran, S. Characteristics and source apportionment of black carbon aerosols over an urban site. Environ Sci Pollut Res 24, 8411–8424 (2017). https://doi.org/10.1007/s11356-017-8453-3

Download citation


  • Black carbon
  • Apportionment
  • Fossil fuel
  • Wood burning
  • Aerosol absorption coefficient
  • Urban