Environmental Science and Pollution Research

, Volume 24, Issue 29, pp 22816–22826 | Cite as

Monitoring nutrients fate after digestate spreading in a short rotation buffer area

  • Nicolò Colombani
  • Bruno Boz
  • Bruna Gumiero
  • Micòl MastrociccoEmail author
Recent advances in assessment on clear water, soil and air


One of the main sources of reactive nitrogen pollution is animal manure. The disposal of digestate (material remaining after the anaerobic digestion of a biodegradable feedstock) in agricultural soils could solve both the problems of soil fertilization and waste removal, but the fate of digestate in the environment must be assessed carefully before its massive utilization. To investigate whether digestate could be safely employed as a soil fertilizer, an agricultural field located in Monastier di Treviso (Northern Italy) and characterized by the presence of low hydraulic conductivity clay soils, was selected to be amended with bovine digestate. The experimental site was intensively monitored by a three-dimensional array of probes recording soil water content, temperature, and electrical conductivity, to solve the water and bulk mass fluxes in the unsaturated zone. High-resolution soil coring allowed the characterization of soil water composition over two hydrological years. Chloride, found in high concentrations in the digestate, was used as environmental tracer to track the fate of the percolating water. The study concluded that digestate could be confidently employed in short rotation buffer areas at an average rate of 195 ± 26 kg-N/ha/year in low hydraulic conductivity soils not affected by diffuse fracturing during dry periods.


Hydraulic conductivity Clay soils Soil water content Digestate Environmental tracer Nitrate 



Authors thank Dr. Umberto Tessari from the Laboratory of Sedimentology of the Physics and Earth Sciences Department of the University of Ferrara for the analytical support. This work was supported by the Veneto Region Authority and Veneto Agricoltura within the FLOROBASCO project.


  1. Amlinger F, Götz B, Dreher P, Geszti J, Weissteiner C (2003) Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability—a review. Eur J Soil Biol 39:107–116. doi: 10.1016/S1164-5563(03)00026-8 CrossRefGoogle Scholar
  2. Azzellino A, Çevirgen S, Giupponi C, Parati P, Ragusa F, Salvetti R (2015) SWAT meta-modeling as support of the management scenario analysis in large watersheds. Water Sci and Technol 72(12):2103–2111. doi: 10.2166/wst.2015.430 CrossRefGoogle Scholar
  3. Berry PM, Sylvester-Bradley R, Philipps L, Hatch DJ, Cuttle SP, Rayns FW, Gosling P (2002) Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag 18:248–255. doi: 10.1111/j.1475-2743.2002.tb00266.x CrossRefGoogle Scholar
  4. Bougnom BP, Niederkofler C, Knapp BA, Stimpfl E, Insam H (2012) Residues from renewable energy production: their value for fertilizing pastures. Biomass Bioenergy 39:290–295. doi: 10.1016/j.biombioe.2012.01.017 CrossRefGoogle Scholar
  5. Brovelli A, Carranza-Diaz O, Rossi L, Barry DA (2011) Design methodology accounting for the effects of porous medium heterogeneity on hydraulic residence time and biodegradation in horizontal subsurface flow constructed wetlands. Ecol Eng 37:758–770. doi: 10.1016/j.ecoleng.2010.04.031 CrossRefGoogle Scholar
  6. Burt TP, Pinay G, Sabater S (2010) What do we still need to know about the ecohydrology of riparian zones? Ecohydrol 3(3):373–377. doi: 10.1002/eco.140 CrossRefGoogle Scholar
  7. Chen Z, Ding W, Xu Y, Müller C, Rütting T, Yu H, Fan J, Zhang J, Zhu T (2015) Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidences from a 15 N tracing study to literature synthesis. Soil Biol Biochem 91:65–75. doi: 10.1016/j.soilbio.2015.08.026 CrossRefGoogle Scholar
  8. Colombani N, Di Giuseppe D, Faccini B, Ferretti G, Mastrocicco M, Coltorti M (2016) Inferring the interconnections between surface water bodies, tile-drains and an unconfined aquifer–aquitard system: a case study. J Hydrol 53:86–95. doi: 10.1016/j.jhydrol.2016.03.046 CrossRefGoogle Scholar
  9. Coppola A, Gerke HH, Comegna A, Basile A, Comegna V (2012) Dual-permeability model for flow in shrinking soil with dominant horizontal deformation. Water Resour Res 48:W08527. doi: 10.1029/2011WR011376 CrossRefGoogle Scholar
  10. Coyne MS (2008) Biological denitrification. In Schepers JS, Raun W editors. Nitrogen in agricultural systems. ASA-CSSSA-SSSA, Madison (WI). Agronomy Monograph 49:197–249Google Scholar
  11. Christel W, Bruun S, Magid JK, Wapinski W, Jensen LS (2016) Pig slurry acidification, separation technology and thermal conversion affect phosphorus availability in soil amended with the derived solid fractions, chars or ashes. Plant Soil 401(1–2):93–107. doi: 10.1007/s11104-015-2519-0 CrossRefGoogle Scholar
  12. De Schepper G, Therrien R, Refsgaard JC, Hansen AL (2015) Simulating coupled surface and subsurface water flow in a tile-drained agricultural catchment. J Hydrol 521:374–388. doi: 10.1016/j.jhydrol.2014.12.035 CrossRefGoogle Scholar
  13. Elrick DE, Reynolds WD (1992) Methods of analyzing constant-head well permeameter data. Soil Sci Soc Am J 56(1):320–323. doi: 10.2136/sssaj1992.03615995005600010052x CrossRefGoogle Scholar
  14. European Commission (2013) Report from the Commission to the Council and the European Parliament on the Implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on member state reports for the period 2008–2011. European Commission, BrusselsGoogle Scholar
  15. FAO (1999) Global climate maps, using Köppen classification, FAO DatabaseGoogle Scholar
  16. Fenchel T, Blackburn H, King GM (2012) Bacterial biogeochemistry: the ecophysiology of mineral cycling, 3rd edn. Academic Press, AmsterdamGoogle Scholar
  17. Fontana A, Mozzi P, Bondesan A (2008) Alluvial megafans in the Venetian–Friulian Plain (north-eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. Quat Int 189(1):71–90. doi: 10.1016/j.quaint.2007.08.044 CrossRefGoogle Scholar
  18. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Sci 320(5878):889–892. doi: 10.1126/science.1136674 CrossRefGoogle Scholar
  19. Govers G, Lobb D, Quine TA (1999) Tillage erosion and translocation: emergence of a new paradigm in soil erosion research. Soil Till Res 51:167–174. doi: 10.1016/S0167-1987(99)00035-5 CrossRefGoogle Scholar
  20. Gumiero B, Mant J, Hein T, Elso J, Boz B (2013) Linking the restoration of rivers and riparian zones/wetlands in Europe: sharing knowledge through case studies. Ecol Eng 56:36–50. doi: 10.1016/j.ecoleng.2012.12.103 CrossRefGoogle Scholar
  21. Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446. doi: 10.1002/jpln.200520510 CrossRefGoogle Scholar
  22. Herrmann M, Rusznyák A, Akob DM, Schulze I, Opitz S, Totsche KU, Küsel K (2015) Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol 81(7):2384–2394. doi: 10.1128/AEM.03269-14 CrossRefGoogle Scholar
  23. Jha P, Biswas AK, Lakaria BL, Saha R, Singh M, Rao AS (2014) Predicting total organic carbon content of soils from Walkley and Black analysis. Commun Soil Sci Plan 45(6):713–725. doi: 10.1080/00103624.2013.874023 CrossRefGoogle Scholar
  24. Jobbagy EG, Jackson RB (2004) Groundwater use and salinization with grassland afforestation. Glob Change Biol 10(8):1299–1312. doi: 10.1111/j.1365-2486.2004.00806.x CrossRefGoogle Scholar
  25. Li D, Jin M, Liang X, Zhan H (2013) Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulphate. Hydrogeol J 21(7):1469–1480. doi: 10.1007/s10040-013-1015-y CrossRefGoogle Scholar
  26. Li X, Guo J, Dong R, Ahring BK, Zhang W (2016) Properties of plant nutrient: comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Sci Tot Environ 544:774–781. doi: 10.1016/j.scitotenv.2015.11.172 CrossRefGoogle Scholar
  27. Mastrocicco M, Boz B, Colombani N, Carrer GM, Bonato M, Gumiero B (2014) Modelling groundwater residence time in a sub-irrigated buffer zone. Ecohydrol 7(3):1054–1063. doi: 10.1002/eco.1437 CrossRefGoogle Scholar
  28. Mastrocicco M, Colombani N, Palpacelli S, Castaldelli G (2011) Large tank experiment on nitrate fate and transport: the role of permeability distribution. Environ Earth Sci 63(5):903–914. doi: 10.1007/s12665-010-0759-0 CrossRefGoogle Scholar
  29. Mastrocicco M, Colombani N, Di Giuseppe D, Faccini B, Coltorti M (2013) Contribution of the subsurface drainage system in changing the nitrogen speciation of an agricultural soil located in a complex marsh environment (Ferrara, Italy). Agr Water Manage 119:144–153. doi: 10.1016/j.agwat.2012.12.018 CrossRefGoogle Scholar
  30. Matsunaka T, Sawamoto T, Ishimura H, Takakura K, Takekawa A (2006) Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland. Int Congr Ser 1293:242–252. doi: 10.1016/j.ics.2006.03.016 CrossRefGoogle Scholar
  31. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 38:37–64. doi: 10.1016/S0960-8524(01)00118-3 CrossRefGoogle Scholar
  32. Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30:1–16. doi: 10.1016/j.eja.2008.06.003 CrossRefGoogle Scholar
  33. Monlau F, Francavilla M, Sambusiti C, Antoniou N, Solhy A, Libutti A, Zabaniotou A, Barakat A, Monteleone M (2016) Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl Energy 169:652–662. doi: 10.1016/j.apenergy.2016.02.084 CrossRefGoogle Scholar
  34. Mortl A, Muñoz-Carpena R, Kaplan D, Li Y (2011) Calibration of a combined dielectric probe for soil moisture and porewater salinity measurement in organic and mineral coastal wetland soils. Geoderma 161:50–62. doi: 10.1016/j.geoderma.2010.12.007 CrossRefGoogle Scholar
  35. Ouyang Y (2012) Estimation of shallow groundwater discharge and nutrient load into a river. Ecol Eng 38(1):101–104. doi: 10.1016/j.ecoleng.2011.10.014 CrossRefGoogle Scholar
  36. Pankau RC, Schoonover JE, Williard KWJ, Edwards PJ (2012) Concentrated flow paths in riparian buffer zones of southern Illinois. Agroforest Syst 84:191–205. doi: 10.1007/s10457-011-9457-5 CrossRefGoogle Scholar
  37. Pinay G, Peiffer S, De Dreuzy JR, Krause S, Hannah DM, Fleckenstein JH, Sebilo M, Bishop K, Hubert-Moy L (2015) Upscaling nitrogen removal capacity from local hotspots to low stream orders’ drainage basins. Ecosystems 18(6):1101–1120. doi: 10.1007/s10021-015-9878-5 CrossRefGoogle Scholar
  38. Riding MJ, Herbert BMJ, Ricketts L, Dodd I, Ostle N, Semple KT (2015) Harmonising conflicts between science, regulation, perception and environmental impact: the case of soil conditioners from bioenergy. Environ Int 75:52–67. doi: 10.1016/j.envint.2014.10.025 CrossRefGoogle Scholar
  39. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:421–4232. doi: 10.1016/j.watres.2008.07.020 CrossRefGoogle Scholar
  40. Różyło K, Oleszczuk P, Jośko I, Kraska P, Kwiecińska-Poppe E, Andruszczak S (2015) An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environ Sci Poll Res 22(10):7833–7842. doi: 10.1007/s11356-014-3927-z CrossRefGoogle Scholar
  41. Schaap MG, Leij FJ, Van Genuchten MTh (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer function. George E. Brown Jr. Salinity Laboratory, USDA-ARS, 450 W. Big Springs Road, Riverside, CA 92.507–4615 USAGoogle Scholar
  42. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Poll Res 16(7):765–794. doi: 10.1007/s11356-009-0213-6 CrossRefGoogle Scholar
  43. Vogeler I, Clothier BE, Green SR, Scotter DR, Tillman RW (1996) Characterizing water and solute movement by TDR and disk permeametry. Soil Sci Soc Am J 60:5–12CrossRefGoogle Scholar
  44. Vogel H-J, Hoffmann H, Leopold A, Roth K (2005) Studies of crack dynamics in clay soil: II. A physically based model for crack formation. Geoderma 125(3–4):213–223. doi: 10.1016/j.geoderma.2004.07.008 CrossRefGoogle Scholar
  45. Vorlicek PA, Antonelli R, Fabbri P, Rausch R (2004) Quantitative hydrogeological studies of the Treviso alluvial plain, NE Italy. Quart J Eng Geol Hydrogeol 37(1):23–29. doi: 10.1144/0036-9276/02-006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nicolò Colombani
    • 1
  • Bruno Boz
    • 2
  • Bruna Gumiero
    • 1
  • Micòl Mastrocicco
    • 3
    Email author
  1. 1.Department of Biological Geological and Environmental SciencesUniversity of BolognaBolognaItaly
  2. 2.Drainage Authority Consorzio di Bonifica Acque RisorgiveVeneziaItaly
  3. 3.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations