Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH

  • 2031 Accesses

  • 6 Citations

Abstract

In this work, the photo-Fenton process at near-neutral pH was applied for the removal of the β-lactam antibiotic oxacillin (OXA) in water using artificial and sunlight. Initially, the main variables of the process (Fe(II), H2O2, and light power) were optimized by a statistical factorial design (23 with center points). The experimental design indicated that 90 μmol L−1 of Fe(II), 10 mmol L−1 of H2O2, and 30 W of power light were the favorable conditions for degradation of OXA at 203 μmol L−1. In the photo-Fenton system, the H2O2 alone, UV-light/H2O2, and Fe(II)/H2O2 subsystems presented a significant participation on antibiotic removal. Moreover, based on the primary organic transformation products, a mechanism of OXA degradation was proposed. Under the favorable operational conditions, both the pollutant and the antimicrobial activity were eliminated after 50 min of process application. Although at 480 min of treatment, only 5% of mineralization was achieved, the level of biodegradability of the solutions increased from 0.08 to 0.98. Interestingly, the presence of pharmaceutical additives (glucose, isopropanol, and oxalic acid) had a moderate interference on the efficiency of the pollutant removal. Additionally, the treatment at pilot scale of the β-lactam antibiotic in a pharmaceutical complex matrix using solar radiation allowed the complete removal of the pollutant and its associated antimicrobial activity in a very short time period (5 min). These results evidenced the applicability of the photo-Fenton process to treat wastewaters from pharmaceutical industry loaded with β-lactam antibiotics at near neutral pH values efficiently.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Boxall A, Johnson P, Smith EJ et al (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297. doi:10.1021/jf053041t

  2. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O−) in aqueous solution. At Energy 17:513–886. doi:10.1063/1.555805

  3. De la Cruz N, Esquius L, Grandjean D et al (2013) Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res 47:5836–5845. doi:10.1016/j.watres.2013.07.005

  4. Dimitrakopoulou D, Rethemiotaki I, Frontistis Z et al (2012) Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J Environ Manag 98:168–174. doi:10.1016/j.jenvman.2012.01.010

  5. Elmolla ES, Chaudhuri M (2011) Combined photo-Fenton—SBR process for antibiotic wastewater treatment. J Hazard Mater 192:1418–1426

  6. Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi:10.1016/j.aquatox.2005.09.009

  7. Giraldo AL, Erazo-Erazo ED, Flórez-Acosta OA et al (2015) Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components. Chem Eng J 279:103–114. doi:10.1016/j.cej.2015.04.140

  8. Giraldo-Aguirre AL, Erazo-Erazo ED, Flórez-Acosta OA et al (2015) TiO2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: evaluation of matrix components, experimental parameters, degradation pathways and identification of organics by-products. J Photochem Photobiol A Chem 311:95–103. doi:10.1016/j.jphotochem.2015.06.021

  9. Halling-Sorensen B, Halling-Sorensen B, Nielsen SN et al (1998) Occurrence, fate and effects of pharmaceuticals substance in the environment—a review. Chemosphere 36:357–393. doi:10.1016/S0045-6535(97)00354-8

  10. He X, Mezyk SP, Michael I et al (2014) Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation. J Hazard Mater 279:375–383

  11. Hislop K, Bolton J (1999) The photochemical generation of hydroxyl radicals in the UV–Vis/ferrioxalate/H2O2 system. Environ Sci Technol:3119–3126. doi:10.1021/es9810134

  12. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices—a review. J Environ Manag 92:2304–2347. doi:10.1016/j.jenvman.2011.05.023

  13. Hunt J, Dean R, Wolff S (1988) Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256:205–212. doi:10.1042/bj2560205

  14. Jones W, Motherwell WDS, Trask AV (2006) Pharmaceutical cocrystals: an emerging approach to physical property enhancement. MRS Bull Pharmaceutical Mater Sci 31:875–879

  15. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364. doi:10.1021/cr020441w

  16. Kümmerer K (2009a) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434. doi:10.1016/j.chemosphere.2008.11.086

  17. Kümmerer K (2009b) Antibiotics in the aquatic environment—a review—part II. Chemosphere 75:435–441. doi:10.1016/j.chemosphere.2008.12.006

  18. Lopez A, Bozzi A, Mascolo G, Kiwi J (2003) Kinetic investigation on UV and UV/H2O2 degradations of pharmaceutical intermediates in aqueous solution. J Photochem Photobiol A Chem 156:121–126. doi:10.1016/S1010-6030(02)00435-5

  19. Michael I, Hapeshi E, Michael C et al (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634. doi:10.1016/j.watres.2012.07.049

  20. Miralles-Cuevas S, Arqués A, Maldonado MI et al (2013) Combined nanofiltration and photo-Fenton treatment of water containing micropollutants. Chem Eng J 224:89–95. doi:10.1016/j.cej.2012.09.068

  21. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2015) Degradation of trimethoprim antibiotic by UVA photoelectro-Fenton process mediated by Fe(III)–carboxylate complexes. Appl Catal B Environ 162:34–44. doi:10.1016/j.apcatb.2014.06.008

  22. Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution—basic principles and a simple heuristic description. Chemosphere 68:2080–2084. doi:10.1016/j.chemosphere.2007.02.015

  23. Ndounla J, Pulgarin C (2014) Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region. Sci Total Environ 493:229–238. doi:10.1016/j.scitotenv.2014.05.139

  24. Palominos RA, Mondaca MA, Giraldo A et al (2009) Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal Today 144:100–105. doi:10.1016/j.cattod.2008.12.031

  25. Petri BG, Watts RJ, Teel AL, et al. (2011) Fundamentals of ISCO using hydrogen peroxide. In: Siegrist RL et al. (ed) In situ chemical oxidation for groundwater remediation. Springer Science + Business Media, pp 33–87. doi:10.1007/978-1-4419-7826-4

  26. Pignatello JJ, Oliveros E, Mackay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. doi:10.1080/10643380500326564

  27. Rodríguez-Gil JL, Catalá M, Alonso SG et al (2010) Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere 80:381–388. doi:10.1016/j.chemosphere.2010.04.045

  28. Royal Pharmaceutical Society of Great Britain (2009) Handbook of pharmaceutical excipients sixth. Pharmaceutical Press, London

  29. Serna-Galvis EA, Silva-Agredo J, Giraldo AL et al (2015) Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chem Eng J. doi:10.1016/j.cej.2015.08.154

  30. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. doi:10.1016/j.envint.2011.07.012

  31. Sutherland R, Croydon EAP, Rolinson GN (1970) Flucloxacillin, a new isoxazolyl penicillin, compared with oxacillin, cloxacillin, and dicloxacillin. Br Med J 4:455–460

  32. Trovó AG, Melo SAS, Nogueira RFP (2008) Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process—application to sewage treatment plant effluent. J Photochem Photobiol A Chem 198:215–220. doi:10.1016/j.jphotochem.2008.03.011

  33. Trovó AG, Nogueira RFP, Agüera A et al (2011) Degradation of the antibiotic amoxicillin by photo-Fenton process—chemical and toxicological assessment. Water Res 45:1394–1402. doi:10.1016/j.watres.2010.10.029

  34. Trovó AG, Nogueira RFP, Agüera A et al (2009) Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res 43:3922–3931. doi:10.1016/j.watres.2009.04.006

  35. Villegas-Guzman P, Silva-Agredo J, Giraldo-Aguirre AL et al (2015a) Enhancement and inhibition effects of water matrices during the sonochemical degradation of the antibiotic dicloxacillin. Ultrason Sonochem 22:211–219. doi:10.1016/j.ultsonch.2014.07.006

  36. Villegas-Guzman P, Silva-Agredo J, González-Gómez D et al (2015b) Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin. J Environ Sci Health A Tox Hazard Subst Environ Eng 50:40–48. doi:10.1080/10934529.2015.964606

  37. Wirz KC, Studer M, Straub JO (2015) Environmental risk assessment for excipients from galenical pharmaceutical production in wastewater and receiving water. Sustain Chem Pharm:1–8. doi:10.1016/j.scp.2015.08.004

Download references

Acknowledgements

The authors thank Colciencias and Swiss National Foundation for the financial support to this study within the projects: “Implementación de metodologías eficientes y confiables para degradar residuos de antimicrobianos en el hogar y en efluentes industriales” and “Treatment of the hospital wastewaters in Cote d’Ivoire and in Colombia by advanced oxidation processes,” respectively. E. Serna-Galvis thanks Colciencias for his doctoral scholarship (Convocatoria 647 de 2014). Finally, the authors thank the mechanical and technical support by Sami Rtimi and André Fattet.

Author information

Correspondence to Ricardo A. Torres-Palma.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(DOCX 2.01 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giraldo-Aguirre, A.L., Serna-Galvis, E.A., Erazo-Erazo, E.D. et al. Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. Environ Sci Pollut Res 25, 20293–20303 (2018). https://doi.org/10.1007/s11356-017-8420-z

Download citation

Keywords

  • Photo-Fenton
  • Near-neutral pH
  • Advanced oxidation process
  • Water treatment
  • Matrix effects
  • Antimicrobial activity