Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran

  • 395 Accesses

  • 11 Citations

Abstract

In the current study, soils of Tang-e Douzan mine, located in Isfahan, Iran, were collected and analyzed for soluble, exchangeable, and total amounts of Pb, Zn, Cd, Ca, and Mg. The maximum Pb, Zn, Cd, Ca, and Mg concentrations in soils were 2500, 1100, 59, 43,800, and 1320 mg/kg for total metals, 86, 83, 6.3, 4650, and 48 mg/kg for their exchangeable fractions, and 59, 3.7, 0.53, 430, and 6.4 mg/kg for their soluble fractions, respectively. All specimens collected, including 69 plant species, were analyzed for Pb, Zn, and Cd. Moreover, their phytoremediation potential was investigated by calculating bioconcentration factors (BCF), translocation factors (TF), and extraction factors (EF) for each heavy metal. Analysis of the leaves for heavy metals showed no metal hyperaccumulation. The highest shoot concentrations of Pb (298 mg/kg) and Zn (740 mg/kg) were found in Roemeria hybrida subsp. dodecandra and Cd (43 mg/kg) in Chenopodium foliosum. Plants having BCFs and TFs > 1 are capable of phytoextraction. Among the analyzed species, four had both TFs and BCFs > 1 for Zn, 13 for Cd, and none for Pb. R. hybrida, Bromus squarrosus, Descurainia sophia, and Poa bulbosa seem to be the best choices for phytoextraction of Zn. Aegilops columnaris, Allium ampeloprasum subsp. iranicum, B. squarrosus, and Cousinia piptocephala are the best choices for phytoextraction of Cd. Plants with BCF > 1 and TF < 1, including Cerastium dichotomum and Muscari neglectum for Pb, Ceratocephala falcata, M. neglectum, Ornithogalum orthophyllum, and Ranunculus arvensis for Zn and C. falcata, M. neglectum, O. orthophyllum, and R. hybrida subsp. dodecandra for Cd, are proposed to be the most efficient species for metal phytostabilization.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Adriano DC (2001) Trace elements in terrestrial environments. Biochemistry, Alburry, Australia. Springer, New York, pp 1–16. https://doi.org/10.1007/978-0-387-21510-5

  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

  3. Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79(3):273–276. https://doi.org/10.1016/S0960-8524(01)00016-5

  4. Alloway BJ (1994) Toxic metals in soil-plant systems. Wiley, Chichester

  5. Anawar HM, Garcia-Sanchez A, Murciego A, Buyolo T (2006) Exposure and bioavailability of arsenic in contaminated soils from the La Parrilla mine, Spain. Environ Geol 50(2):170–179. https://doi.org/10.1007/s00254-006-0196-2

  6. Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation-an overview. Crit Rev Plant Sci 24(2):109–122. https://doi.org/10.1080/07352680590952496

  7. Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3(1-4):643–654. https://doi.org/10.1080/01904168109362867

  8. Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

  9. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

  10. BGBl. 504 (1991) Verordnungdes Bundesministers fur Landund Forstwirtschaft betreffend Schwellenwerte fur Grundwasserinhaltsstoffe (Grundwasserschwellenwertverordnung-GSwV)

  11. Cunningham SD (1995) In proceedings/abstracts of the fourteenth annual symposium, current topics in plant biochemistry, physiology, and molecular biology columbia, April 19–22, pp 47–48

  12. Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytorem 11(8):664–691. https://doi.org/10.1080/15226510902787302

  13. Davies BE (1987) Consequences of environmental contamination by lead mining in Wales. Hydrobiologia 149(1):213–220. https://doi.org/10.1007/BF00048662

  14. Ernst WHO (2000) Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol 146(3):357–358. https://doi.org/10.1046/j.1469-8137.2000.00669.x

  15. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99(3):259–278. https://doi.org/10.1016/S0168-1656(02)00218-3

  16. Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66

  17. Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:75–90

  18. Ghaderian SM, Baker AJM (2007) Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. J Geochem Explor 92(1):34–42. https://doi.org/10.1016/j.gexplo.2006.06.002

  19. Ghaderian SM, Ghotbi Ravandi AA (2012) Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. J Geochem Explor 123:25–32. https://doi.org/10.1016/j.gexplo.2012.06.022

  20. Ghaderian SM, Hemmat GR, Reeves RD, Baker AJM (2007) Accumulation of lead and zinc by plants colonizing a metal mining area in central Iran. J Appl Bot Food Qual 81:145–150

  21. Gwozdz EA, Kopyra M (2003) Plant cell responses to heavy metals-biotechnological aspects. Biotechnologia 3:107–123

  22. Ha NTH, Sakakibara M, Sano S, Nhuan MT (2011) Uptake of metals and metalloids by plants growing in a lead-zinc mine area, northern Vietnam. J Hazard Mater 186(2-3):1384–1391. https://doi.org/10.1016/j.jhazmat.2010.12.020

  23. Jalili A, Jamzad Z (1999) Red data book of Iran. RIFR, Tehran

  24. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

  25. Kim Y, Yang Y, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plant 116(3):368–372. https://doi.org/10.1034/j.1399-3054.2002.1160312.x

  26. Kim IS, Kang HK, Johnson-Green P, Lee EJ (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut 126(2):235–243. https://doi.org/10.1016/S0269-7491(03)00190-8

  27. Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012) Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil Pollut 223(2):877–888. https://doi.org/10.1007/s11270-011-0909-3

  28. Li YM, Chaney RL, Angle JS, Baker AJM (2000) Phytoremediation of heavy metal contaminated soils. Environ Sci Poll Con Ser 22:837–857

  29. Lombi E, Sletten RS, Wenzel WW (2000) Sequentially extracted arsenic from different size fractions of contaminated soil. Water Air Soil Pollut 124(3/4):319–332. https://doi.org/10.1023/A:1005230628958

  30. Lorenz SE, Hamon RE, Holm PE, Domingues HC, Sequeria EM (1997) Cadmium and zinc in plants and H2O-extracts from contaminated soils. Plant Soil 189(1):21–23. https://doi.org/10.1023/A:1004214923372

  31. Lozet J, Mathieu C (1991) Dictionary of soil science, 2nd edn. A. A. Balkema, Rotterdam

  32. Mahdavian K, Ghaderian SM, Torkzadeh-Mahani M (2017) Accumulation and phytoremediation of Pb, Zn, and ag by plants growing on Koshk lead-zinc mining area, Iran. J Soils Sediments 17(5):1310–1320. https://doi.org/10.1007/s11368-015-1260-x

  33. Mattina MI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124(3):375–378. https://doi.org/10.1016/S0269-7491(03)00060-5

  34. McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken. https://doi.org/10.1002/047127304X

  35. McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56. https://doi.org/10.1016/S0065-2113(02)75002-5

  36. Moreno-Jimenez E, Penalosa JM, Manzano R, Carpena-Ruuiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NWMadrid (Spain) and their transference to wild flora. J Hazard Mater 162(2-3):854–859. https://doi.org/10.1016/j.jhazmat.2008.05.109

  37. Otero XL, Alvarez E, Fernandez-Sanjurjo MJ, Macias F (2012) Micronutrients and toxic trace metals in the bulk and rhizosphericsoil of the spontaneous vegetation at an abandoned copper mine in Galicia (NW Spain). J Geochem Explor 112:84–92. https://doi.org/10.1016/j.gexplo.2011.07.007

  38. Pitchtel J, Kuroiwa K, Sawyerr HT (2000) Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environ Pollut 110(1):171–178. https://doi.org/10.1016/S0269-7491(99)00272-9

  39. Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21(6):539–566. https://doi.org/10.1080/0735-260291044359

  40. Pruess A (1994) Einstufung mobiler Spurenelemente in Boden. In: Rosenkranz D, Einsele G, Harress M (eds) Ergänzbares Handbuch der Maßnahmen und Empfehlungen fur Schutz, Pflege und Sanierung von Boden, Landschaft und Grundwasser, 15. Lieferung, I/94. Erich Schmidt Verlag, Berlin

  41. Raskin I, Kumar PBAN, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin 5:285–290

  42. Reeves RD (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L., and other genera of Brassicaceae. Taxon 32:309–318

  43. Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd., Andover, pp 253–278 509 pp

  44. Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

  45. Reeves RD, Kruckeberg AR, Adigüzel N, Krämer U (2001) Studies of the flora of serpentine and other metalliferous areas of western Turkey. S Afr J Sci 97:513–517

  46. Rio MD, Font R, Almela C, Velez D, Montoro R, Bailon ADH (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcollar mine. J Biotechnol 98(1):125–137

  47. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203(1):47–56. https://doi.org/10.1023/A:1004328816645

  48. Robinson B, Duwig C, Bolan N, Marchetti M, Moni C, Schroeter L, Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environ Explor Bot 58(1-3):206–215. https://doi.org/10.1016/j.envexpbot.2005.08.004

  49. Schwitzguebel JP (2000) Potential of Pytoremediation, an emerging green technology. Ecosystem service and sustainable watershed Management in North China, international conference, Beijing, P.R. China, August 23-25:364–350

  50. Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2002) Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ Pollut 120(2):445–453. https://doi.org/10.1016/S0269-7491(02)00110-0

  51. Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61(5-6):405–412. https://doi.org/10.1007/s00253-003-1244-4

  52. Sparks D L (1996) Methods of soil analysis, part 3 (SSSA Book Series No. 5). Madison, Wisc.:SSSA and ASA

  53. Stoltz E, Greger M (2002) Accumulation properties of as, cd, cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47(3):271–280. https://doi.org/10.1016/S0098-8472(02)00002-3

  54. Suresh B, Ravishanker GA (2004) Phytoremediation, a novel and promising approach for environmental cleanup. Crit Rev Biotechnol 24(2-3):97–124. https://doi.org/10.1080/07388550490493627

  55. Thornton I (1995) Metals in the global environment-facts and misconceptions. ICME, Ottawa

  56. Thornton L (1999) Bioavailability of trace metals in the food chain. The 2nd International Vetiver Conference, Bangkok

  57. Tlustoš P, Száková J, Hruby’ J, Hartman I, Najmanová J, Nedělník J, Pavlíková D, Batysta M (2006) Removal of as, cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423

  58. Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid elements: facts and fiction. Plant Soil 362:319–334

  59. Weber O, Scholz RW, Buhlmann R, Grasmuck D (2001) Risk perception of heavy metal soil contamination and attitudes toward decontamination strategies. Risk Anal 21(5):967–977. https://doi.org/10.1111/0272-4332.215165

  60. Wenzel WW, Adriano DC, Salt D, Smith R (1999) Phytoremediation: a plant-microbe-based remediation system. In: Agronomy Monograph no. 37. Madison, WI, USA, pp. 456–508

  61. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780. https://doi.org/10.1016/S0045-6535(02)00232-1

  62. Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R (2011) Phytostabilization potential of Jatropha curcas L. in polymetallic acid minetailings. Int J Phytorem 13(8):788–804. https://doi.org/10.1080/15226514.2010.525562

  63. Yoon J, Cao X, Zhou O, Ma LQ (2006) Accumulation of Pb, cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2-3):456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016

  64. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413. https://doi.org/10.1016/j.envint.2006.12.005

Download references

Acknowledgements

The authors are thankful to the Graduate School of Kharazmi University and University of Isfahan for providing the research facilities needed for this study. They also express their gratitude to K. Negaresh for identification of plant species.

Author information

Correspondence to Azam Salimi.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hesami, R., Salimi, A. & Ghaderian, S.M. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environ Sci Pollut Res 25, 8701–8714 (2018). https://doi.org/10.1007/s11356-017-1156-y

Download citation

Keywords

  • Bioconcentration factor
  • Translocation factor
  • Extraction factor
  • Lead
  • Zinc
  • Cadmium
  • Heavy metals
  • Phytoremediation